
Need help? Email FleetSupport@garmin.com Page a 001-00096-00 Rev. S

Garmin Fleet Management

Interface Control Specification

Garmin Ltd. or its subsidiaries

C/o Garmin International, Inc

1200 E. 151st Street

Olathe, KS 66062 U.S.A.

Drawing Number 001-00096-00 Rev. S

File type: MS-Word

Rev. Date Description of Change ECO #

A 01/02/07 Initial Release ----

B 07/07/08 1. Added protocols: Unicode support Request, A604 Server to Client Open Text
Message, Text Message Status Request, Canned Response Protocols,
Canned Message Protocols, Sort Stop List, Driver ID and Status Protocols,
File Transfer Protocols, User Interface Text, Ping (Communication Link
Status), and Message Throttling.

2. Added Unicode support.
3. Added to the Data Deletion protocol: Delete active navigation route on Client,

Delete all canned messages on Client, Delete all canned replies on Client,
Delete the Fleet Management GPI file, Delete all driver ID and status
information, Delete all fleet management data on Client and disable the fleet
management interface on the Client.

4. Corrected type definition of Protocol_Support_Data_Type to match existing
implementation.

5. Clarified Client behavior when a text message is received, and when a Stop is
received.

54456

C 07/29/08 1. Improve Server to Client Canned Response Text Message protocol (correct
text_msg_ack_data_type, improve error responses, add Server to Client
receipt packet).

2. Clarify that file and message ID fields are exactly 16 bytes.
3. Rename all fields indicating result of a Client operation to result_code.

55073

D 09/22/08 1. Harmonize names of data types throughout document.
2. In Section 5.1.5.1.2, indicate that a result code of 3 may be returned for an

invalid message ID.
3. Describe a method for computing CRC32 data one block at a time.
4. Throttle certain protocols by default to match FMI version 1 behavior, and

define Message Throttling Query protocol.

56492

CONFIDENTIAL

This drawing and these specifications contained herein
are the property of Garmin Ltd. Or its subsidiaries and
may not be reproduced or used in whole or in part as
the basis for manufacture or sale of products without
written permission.

 Approvals Date

Drawn OKO 01/02/07

Checked SB 01/02/07

Project Mgr. OKO 01/02/07

Released SMP 01/03/07

Need help? Email FleetSupport@garmin.com Page b 001-00096-00 Rev. S

Rev. Date Description of Change ECO #

E 01/22/10 1. Updated the enable protocol to optionally accept a payload which allows
specifying features to be enabled or disabled.

2. Added protocols: A607 Client to Server Text Message, Waypoint Protocols
(and related throttling and data deletion protocols), A607 Driver ID Protocols,
A607 Driver Status Protocols.

3. Noted that legacy protocols are no longer supported in A607 or later Clients.

68887

F 09/03/10 1. Added protocols: A606 FMI Safe Mode, Section 5.1.18.
2. Corrected driver_status_D607_data_type member order.

75173

G. 05/04/11 1. Added protocols: A608 Speed Limit Alerts, Section 5.1.19. 81135

H. 07/20/12 1. Updated the enable protocol definition to allow AOBRD feature to be enabled,
Section 5.1.2.

2. Updated the file transfer protocol to handle multiple file types and Client-to-
Server file transfer, Section 5.1.13.1.

3. Added Protocol: A609 Remote Reboot, Section 5.1.20.
4. Added support for HOS_FMI 1.0: A610 AOBRD Support, Section 6.6.

92741

J. 12/21/12 1. Added Protocol: A611 Long Text Message, Section 5.1.5.1.2.
2. Moved deprecated protocols to Appendices, Section 6.7.
3. Italicized structure names and structure members in protocol descriptions.

97020

K. 07/15/13 1. Added protocol: A612 Custom Form, Section 5.1.21
2. Added protocol: A613 Custom Avoidance, Section 5.1.21.7
3. Added protocol: A614 Path Specific Stop, Section 5.1.6.2.2
4. Added sub-sections to File Transfer protocols for improved user experience.

103983

L. 12/19/13 1. 1. Corrected AOBRD Event Type 8 and 9 Flag Field bits, Section 6.6.4.1.3.9,
2. Section 6.6.4.1.3.10.
3. 2. Added protocol A615 HOS_2, Section 6.6.
4. 3. Added protocol A616 Set Baud Rate, Section 5.1.23.
5. 4. Added text describing AOBRD login sequence, Section 6.6.1.
6. 5. Added AOBRD logout Section 6.6.2.
7. 6. Added AOBRD Annotation descriptions, Section 6.6.4.1.3.1.
8. 7. Moved A602 Stop Protocol to Deprecated Section, Section 6.7.4.1.
9. 8. Added Custom Form Truck Inspection example reference, Section 5.1.21.
10. 9. Updated the latest changes to ETA, Section 5.1.8.

111708

M. 06//10/14 11. 1. Added UTF-8 Unicode support for A614 Path Specific Stop, Section 5.1.6.2.
12. 2. Added protocol A617 Alert Pop-up, Section 5.1.24.
13. 3. Added protocol A617 Sensor Display, Section 5.1.25.

4. Added protocol A618 Stop, Section 5.1.6.3.
14. 5. Added protocol A619 HOS Settings, Section 6.6.10.
15. 6. Corrected Reference to Section 6.3 in Section 5.2.1.
16. 7. Added PSS Packet ID’s and sub-sections to “Client to Server” File End

 Receipt, Section 5.1.13.1.6.
17. 8. Added AOBRD Device Failure description, Section 6.6.4.1.3.7.
18. 9. Added CRC-32 algorithm description and table generation code, Section 6.5.1.

120796

N. 10/24/14 1. Updated tables to show AOBRD maximum character length, Section 6.6.4.1.
19. 2. Added protocol A620 HOS Driver Start Time, Section 6.6.10.4.
20. 3. Added IFTA return code, Section 6.6.9.
21. 4. Added note to several arrays within structures to indicate constant versus
22. variable length.

121479

P. 09/15/15 1. Clarified when ETA is sent to Server, Section 5.1.8.
2. Added meters per second notes in A608 Speed Limit Alert, Section 5.1.19.2.
3. Added max template notes in A612 Custom Form Templates, Section 5.1.21.
4. Added error code 3 to protocol A616 Set Baud Rate, Section 5.1.23.
5. Corrected Path Specific Stop Request Client to Server, Section 5.1.6.2.2.1.
6. Corrected Maximum Number of Custom Forms to 30, Section 5.1.21.
7. Added protocol A621 Custom Form Show Command, Section 5.1.21.7.
8. Added protocol A621 Picture in XML Custom Form, Section 5.1.21.8.
9. Added protocol A622 Dash Camera, Section 5.1.26.

Q. 2/29/16 1. Added guidelines for creating Path Specific Stops, Section 5.1.6.2.
2. Added Product ID table, Section 6.
3. Added Text Message encoded symbol table Section 5.1.5.1.

Need help? Email FleetSupport@garmin.com Page c 001-00096-00 Rev. S

Rev. Date Description of Change ECO #

R. 4/28/16 1. Added ETA Mode Setting, Section 5.1.8.1.
2. Added Custom Form error codes, Section 5.1.13.1.6.3.
3. Added GZIP information to PSS Section 5.1.6.2.2 and AOBRD Section 6.6.1.3,

S. 11/14/18 1. Added 38400 baud to protocol A616 Set Baud Rate, Section 5.1.23.
2. Updated Product ID table, Section 6.
3. Updated Secion 5.1

T. 4/11/19 1. Updated map symbol URL link, Section 1.4
2. Updated D617 0x1401 unique_id to uint16 Section 5.1.24

Need help? Email FleetSupport@garmin.com Page i 001-00096-00 Rev. S

Garmin Fleet Management Interface Control

Specification

November 14, 2018

Drawing Number: 001-00096-00 Rev. S

Limitation of Warranties and Liability:

Garmin International, Inc. and its affiliates make no warranties, whether express, implied or statutory, to companies

or individuals accessing Garmin Fleet Management Interface Control Specification, or any other person, with

respect to the Garmin Fleet Management Interface Control Specification, including, without limitation, any

warranties of merchantability or fitness for a particular purpose, or arising from course of performance or trade

usage, all of which are hereby excluded and disclaimed by Garmin. Garmin does not warrant that the Specification

will meet the requirements of potential Fleet Management customers, that the Specification will work for all mobile

platforms that potential customer may desire, or that the Specification is error free.

Garmin International, Inc. and its affiliates shall not be liable for any indirect, incidental, consequential, punitive or

special damages for any cause of action, whether in contract, tort or otherwise, even if Garmin International, Inc. has

been advised of the possibility of such damages.

Warning:

All companies and individuals accessing the Garmin Fleet Management Interface Control Specification are advised

to ensure the correctness of their Device software and to avoid the use of undocumented features, particularly with

respect to packet ID, command ID, and packet data content. Any software implementation errors or use of

undocumented features, whether intentional or not, may result in damage to and/or unsafe operation of the device.

Garmin’s Fleet Management solutions:

Please visit Garmin’s Fleet Management web page at: http://www.garmin.com/solutions/

Garmin’s Fleet Management Technical Support or Feedback:

For technical support or to provide feedback please email: FleetSupport@garmin.com

http://www.garmin.com/solutions/

Need help? Email FleetSupport@garmin.com Page 1 001-00096-00 Rev. S

1 Introduction ... 6

1.1 Overview ... 6

1.2 Definition of Terms ... 6

1.3 Serialization of Data .. 6

1.4 Data Types .. 6

2 Protocol Layers ... 8

3 Physical/Link Protocol .. 8

3.1 Serial Protocol ... 8

3.1.1 Serial Packet Format ... 8

3.1.2 DLE Stuffing ... 9

3.1.3 ACK/NAK Handshaking .. 9

4 Overview of Application Protocols... 9

4.1 Packet Sequences .. 9

4.2 Undocumented Application Packets .. 10

5 Application Protocols ... 10

5.1 Fleet Management Protocols ... 10

5.1.1 Protocol Identifier ... 11

5.1.2 Enable Fleet Management Protocol .. 11

5.1.3 Product ID and Support Protocol .. 13

5.1.4 Unicode Support Protocol ... 13

5.1.5 Text Message Protocols .. 14

5.1.5.1 Server to Client Text Message Protocols ... 14

5.1.5.2 Message Status Protocol ... 19

5.1.5.3 Message Delete Protocol .. 20

5.1.5.4 Canned Response List Protocols .. 21

5.1.5.5 A607 Client to Server Open Text Message Protocol ... 23

5.1.5.6 Canned Message (Quick Message) List Protocols ... 23

5.1.5.7 Other Text Message Protocols (Deprecated) .. 25

5.1.6 Stop (Destination) Protocols ... 25

5.1.6.1 A603 Stop Protocol .. 26

Need help? Email FleetSupport@garmin.com Page 2 001-00096-00 Rev. S

5.1.6.2 A614 Path Specific Stop (PSS) Protocol .. 26

5.1.6.3 A618 Stop Protocol .. 30

5.1.7 Stop Status Protocol .. 31

5.1.8 Estimated Time of Arrival (ETA) Protocol ... 32

5.1.8.1 A623 ETA Mode Setting .. 32

5.1.8.2 ETA Reports... 33

5.1.9 Auto-Arrival at Stop Protocol ... 34

5.1.10 Sort Stop List Protocol ... 35

5.1.11 Waypoint Protocols .. 35

5.1.11.1 Create Waypoint Protocol .. 35

5.1.11.2 Waypoint Deleted Protocol .. 36

5.1.11.3 Delete Waypoint Protocol .. 36

5.1.11.4 Delete Waypoint by Category Protocol .. 36

5.1.11.5 Create Waypoint Category Protocol ... 37

5.1.12 Driver ID and Status Protocols ... 38

5.1.12.1 Driver ID Monitoring Protocols ... 38

5.1.12.2 Other Driver ID Monitoring Protocols (Deprecated) ... 39

5.1.12.3 Driver Status List Protocols ... 39

5.1.12.4 Driver Status Monitoring Protocols ... 41

5.1.12.5 Other Driver Status Monitoring Protocols (Deprecated) .. 43

5.1.13 File Transfer Protocols ... 43

5.1.13.1 Server to Client - File Transfer Protocol .. 43

5.1.13.2 Client to Server File Transfer Protocol .. 53

5.1.13.3 File Information Protocol ... 56

5.1.14 Data Deletion Protocol ... 57

5.1.15 User Interface Text Protocol ... 58

5.1.16 Ping (Communication Link Status) Protocol .. 58

5.1.17 Message Throttling Protocols ... 59

5.1.17.1 Message Throttling Control Protocol ... 59

5.1.17.2 Message Throttling Query Protocol ... 60

Need help? Email FleetSupport@garmin.com Page 3 001-00096-00 Rev. S

5.1.18 FMI Safe Mode Protocol .. 60

5.1.19 Speed Limit Alert Protocols ... 61

5.1.19.1 Speed Limit Alert Setup Protocol .. 61

5.1.19.2 Speed Limit Alert Protocol .. 62

5.1.20 A609 Remote Reboot ... 63

5.1.21 Custom Form Protocols .. 63

5.1.21.1 A612 and A621 Custom Form file format ... 63

5.1.21.2 A612 Custom Form Template send to Client Protocol .. 64

5.1.21.3 A612 Custom Form submit to Server Protocol .. 64

5.1.21.4 A612 Custom Form Template delete on Client Protocol ... 64

5.1.21.5 A612 Custom Form Template move position on Client Protocol .. 65

5.1.21.6 A612 Custom Form Template position request on Client Protocol ... 65

5.1.21.7 A621 Custom Form Template show request on Client Protocol .. 66

5.1.21.8 A621 Custom Form containing a Picture ... 67

5.1.22 Custom Avoidance Protocols ... 67

5.1.22.1 A613 Custom Avoidance Area Feature Enable Protocol ... 67

5.1.22.2 A613 Custom Avoidance New/Modify Protocol ... 68

5.1.22.3 A613 Custom Avoidance Delete Protocol ... 68

5.1.22.4 A613 Custom Avoidance Enable/Disable Protocol.. 69

5.1.23 A616 Set Baud Rate Protocol ... 70

5.1.24 A617 Alert Popup Protocol .. 71

5.1.25 A617 Sensor Display Protocols .. 72

5.1.25.1 A617 Configure Sensor Display Protocol .. 72

5.1.25.2 A617 Update Sensor Display Status Protocol .. 74

5.1.25.3 A617 Delete Sensor Display Protocol .. 75

5.1.25.4 A617 Sensor Display List Position Protocol .. 75

5.1.26 A622 FMI Dash Camera Protocols ... 76

5.1.26.1 A622 Lock Dash Camera Configuration .. 76

5.1.26.2 A622 Set Dash Camera Configuration ... 77

5.1.26.3 A622 Get Dash Camera Configuration .. 78

Need help? Email FleetSupport@garmin.com Page 4 001-00096-00 Rev. S

5.1.26.4 A622 Set Dash Camera Notification Configuration ... 79

5.1.26.5 A622 Get Dash Camera Notification Configuration .. 79

5.1.26.6 A622 Dash Camera Warning Notification to Server .. 80

5.1.26.7 A622 Dash Camera Incident File Notification for Server .. 81

5.2 Other Relevant Garmin Protocols ... 81

5.2.1 Command Protocol ... 81

5.2.2 Unit ID/ESN Protocol ... 82

5.2.3 Date and Time Protocol .. 82

5.2.4 Position, Velocity, and Time (PVT) Protocol ... 82

6 Appendices ... 84

6.1 Product IDs .. 84

6.2 Packet IDs ... 86

6.3 Fleet Management Packet IDs ... 86

6.4 Command IDs ... 91

6.5 CRC-32 Algorithm .. 91

6.5.1 CRC method ... 91

6.5.2 CRC algorithm example.. 92

6.6 Hours of Service (HOS) Functionality .. 96

6.6.1 AOBRD Driver Login ... 97

6.6.1.1 AOBRD Driver Authentication Protocol ... 97

6.6.1.2 AOBRD Driver Profile Protocols ... 97

6.6.1.3 Duty Status Change Event Logs File Request by Client .. 100

6.6.1.4 AOBRD Shipment Protocol ... 102

6.6.1.5 AOBRD Annotation Protocol .. 104

6.6.2 AOBRD Driver Logout ... 105

6.6.2.1 Driver Initiated Logout Protocol .. 105

6.6.2.2 Server Initiated Logout Protocol .. 105

6.6.2.3 Client System Initiated Logout Protocol .. 106

6.6.3 AOBRD Driver Profile Update Protocol .. 107

6.6.3.1 HOS_1.0 Driver Profile Update to Client (Property Carrying only) .. 107

Need help? Email FleetSupport@garmin.com Page 5 001-00096-00 Rev. S

6.6.3.2 HOS_2.0 Driver Profile Update to Client (Property/Passenger Carrying) 108

6.6.4 AOBRD Event Log Protocol .. 109

6.6.4.1 Event Log Record Format .. 110

6.6.4.2 New Driver Event Log Record to Server ... 114

6.6.5 AOBRD Set Odometer Request .. 115

6.6.6 Auto-Status Driver Update Protocol ... 115

6.6.7 Adverse Driving Conditions Exemption Protocol... 116

6.6.8 Driver 8-Hour Rule Enable Protocol ... 117

6.6.9 IFTA File Protocols .. 117

6.6.9.1 IFTA File Request Protocol ... 117

6.6.9.2 IFTA File Delete Protocol .. 118

6.6.10 HOS Settings Protocol .. 119

6.6.10.1 A619 Auto-Status Driver Update ... 120

6.6.10.2 A619 Driver 8-Hour Rule Enable .. 121

6.6.10.3 A619 Periodic Driver Status .. 122

6.6.10.4 A620 Start Time of Day ... 122

6.7 Deprecated Protocols ... 123

6.7.1 Text Message Protocols (Deprecated) .. 123

6.7.1.1 A603 Client to Server Open Text Message Protocol (Deprecated) .. 123

6.7.1.2 A602 Server to Client Open Text Message Protocol (Deprecated) .. 124

6.7.1.3 Server to Client Simple Okay Acknowledgement Text Message Protocol (Deprecated) 124

6.7.1.4 Server to Client Yes/No Confirmation Text Message Protocol (Deprecated) 125

6.7.1.5 StreetPilot Text Message Protocol (Deprecated).. 126

6.7.2 Driver ID Monitoring Protocols (Deprecated) .. 126

6.7.2.1 A604 Server to Client Driver ID Update Protocol (Deprecated).. 126

6.7.2.2 A604 Client to Server Driver ID Update Protocol (Deprecated).. 127

6.7.2.3 A604 Server to Client Driver ID Request Protocol (Deprecated) .. 127

6.7.3 Driver Status Monitoring Protocols (Deprecated)... 128

6.7.3.1 A604 Server to Client Driver Status Update Protocol (Deprecated) .. 128

6.7.3.2 A604 Client to Server Driver Status Update Protocol (Deprecated) .. 128

Need help? Email FleetSupport@garmin.com Page 6 001-00096-00 Rev. S

6.7.3.3 A604 Server to Client Driver Status Request Protocol (Deprecated) ... 129

6.7.4 Stop Message Protocols (Deprecated) .. 129

6.7.4.1 A602 Stop Protocol (Deprecated) .. 129

6.7.4.2 StreetPilot Stop Message Protocol (Deprecated).. 129

7 Frequently Asked Questions ... 131

7.1 Fleet Management Support on Garmin Devices .. 131

1 Introduction

1.1 Overview

This document describes the Garmin Fleet Management Interface, which is used to communicate with a Garmin

device for the purpose of Fleet Management / Enterprise Tracking applications. The Device Interface supports bi-

directional transfer of data. In the sections below, detailed descriptions of the interface protocols and data types are

given.

Note: It is highly recommended to perform initial prototype testing with the Garmin “Fleet Management

Controller” tool (also known as the “FMC” or “PC App”), which simulates Server connectivity when

connected to a Garmin FMI Client device. This would allow a developer to observe format and sequence of

protocol packet exchanges outlined in this document. This free tool can be found in the Fleet Management

Interface Developer Kit at: http://developer.garmin.com/fleet-management/

1.2 Definition of Terms

• Client – Refers to a Garmin-produced device that supports fleet management.

• Server – Refers to the device communicating with the Garmin-produced device.

1.3 Serialization of Data

Every data type must be serialized into a stream of bytes to be transferred over a serial data link. Serialization of

each data type is accomplished by transmitting the bytes in the order that they would occur in memory given a

machine with the following characteristics:

1. Data structure members are stored in memory in the same order as they appear in the type definition.

2. All structures are packed, meaning that there are no unused “pad” bytes between structure members.

3. Multi-byte numeric types are stored in memory using little-endian format, meaning the least-

significant byte occurs first in memory followed by increasingly significant bytes in successive

memory locations.

1.4 Data Types

The following table contains data types that are used to construct more complex data types in this document. The

order of the members in the data matches the order shown in structures in this document and there is no padding not

expressed in this document.

http://developer.garmin.com/fleet-management/

Need help? Email FleetSupport@garmin.com Page 7 001-00096-00 Rev. S

Data Type Description

Char 8 bits in size and its value is an ASCII character

uchar_t8 This represents a single byte in the UTF-8 variable length encoding for Unicode characters

and is backwards compatible with ASCII characters.

The contents of an uchar_t8 array will always be ASCII characters unless both the Server

and Client support Unicode. If both the Server and Client support Unicode, then the

contents of an uchar_t8 array can have UTF-8 encoded characters. Please see Section

5.1.4 for more information.

uint8 8-bit unsigned integers

uint16 16-bit unsigned integers

uint32 32-bit unsigned integers

sint16 16-bit signed integers

sint32 32-bit signed integers

float32 32-bit IEEE-format floating point data (1 sign bit, 8 exponent bits, and 23 mantissa bits)

float64 64-bit IEEE-format floating point data (1 sign bit, 11 exponent bits, and 52 mantissa bits)

Boolean 8-bit integer used to indicate true (non-zero) or false (zero).

time_type The time_type is used in some data structures to indicate an absolute time. It is an

unsigned 32-bit integer and its value is the number of seconds since 12:00 am December

31, 1989 UTC. A hex value of 0xFFFFFFFF represents an invalid time, and the Client

will ignore the time.

sc_position_type The sc_position_type is used to indicate latitude and longitude in semicircles, where 231

semicircles equal 180 degrees. North latitudes and East longitudes are indicated with

positive numbers; South latitudes and West longitudes are indicated with negative

numbers. All positions are given in WGS-84.

typedef struct

 {

 sint32 lat; /* latitude in semicircles */

 sint32 lon; /* longitude in semicircles */

 } sc_position_type;

The following formulas show how to convert between degrees and semicircles:

degrees = semicircles * (180 / 231)

semicircles = degrees * (231 / 180)

Need help? Email FleetSupport@garmin.com Page 8 001-00096-00 Rev. S

double_position_type The double_position_type is used to indicate latitude and longitude in radians. North

latitudes and East longitudes are indicated with positive numbers; South latitudes and

West longitudes are indicated with negative numbers. All positions are given in WGS-84.

typedef struct

 {

 float64 lat; /* latitude in radians */

 float64 lon; /* longitude in radians */

 } double_position_type;

The following formulas show how to convert between degrees and radians:

degrees = radians * (180 / pi)

radians = degrees * (pi / 180)

map_symbol An enumeration that specifies a map symbol. It is an unsigned 16-bit integer. For possible

values, see the Garmin Device Interface Specification at

https://developer.garmin.com/resources/additional-resources/

2 Protocol Layers

The protocols used in the fleet management interface control are arranged in the following layers:

Protocol Layer

Application Highest

Physical/Link Lowest

 The Physical layer is based on RS-232. The link layer uses packets with minimal overhead. At the Application

layer, there are several protocols used to implement data transfers between a Client and a Server. These protocols

are described in more detail later in this document.

3 Physical/Link Protocol

3.1 Serial Protocol

The Serial protocol is RS-232. Other electrical characteristics are full duplex, serial data, 9600 baud, 8 data bits, no

parity bits, and 1 stop bit.

3.1.1 Serial Packet Format

All data is transferred in byte-oriented packets. A packet contains a three-byte header (DLE, ID, and Size), followed

by a variable number of data bytes, and followed by a three-byte trailer (Checksum, DLE, and ETX). The following

table shows the format of a packet:

Byte

Number

Byte Description Notes

0 Data Link Escape ASCII DLE character (16 decimal)

1 Packet ID identifies the type of packet (See Appendix 6.2)

2 Size of Application

Payload

number of bytes of packet data (bytes 3 to n-4)

3 to n-4 Application Payload 0 to 255 bytes

n-3 Checksum 2's complement of the sum of all bytes from byte 1 to byte n-4 (end of

the payload)

https://developer.garmin.com/resources/additional-resources/

Need help? Email FleetSupport@garmin.com Page 9 001-00096-00 Rev. S

n-2 Data Link Escape ASCII DLE character (16 decimal)

n-1 End of Text ASCII ETX character (3 decimal)

3.1.2 DLE Stuffing

If any byte in the Size, Packet Data, or Checksum fields is equal to DLE, then a second DLE is inserted immediately

following the byte. This extra DLE is not included in the size or checksum calculation. This procedure allows the

DLE character to be used to delimit the boundaries of a packet.

3.1.3 ACK/NAK Handshaking

Unless otherwise noted in this document, a device that receives a data packet must send an ACK or NAK packet to

the transmitting device to indicate whether the data packet was successfully received. Normally, the transmitting

device does not send any additional packets until an ACK or NAK is received (this is sometimes referred to as a

“stop and wait” or “blocking” protocol). The following table shows the format of an ACK/NAK packet:

Byte Number Byte Description Notes

0 Data Link Escape ASCII DLE character (16 decimal)

1 Packet ID ASCII ACK/NAK character (6 or 21 decimals respectively)

(See Appendix 6.2)

2 Size of Packet Data 2

3 Packet Data Packet ID of the acknowledged packet.

4 NULL 0

5 Checksum 2's complement of the sum of all bytes from byte 1 to byte 4

6 Data Link Escape ASCII DLE character (16 decimal)

7 End of Text ASCII ETX character (3 decimal)

The ACK packet has a Packet ID equal to 6 decimals (the ASCII ACK character), while the NAK packet has a

Packet ID equal to 21 decimals (the ASCII NAK character). Both ACK and NAK packets contain an 8-bit integer in

their packet data to indicate the Packet ID of the acknowledged packet.

If an ACK packet is received, the data packet was received correctly, and communication may continue. If a NAK

packet is received, the data packet was not received correctly and should be sent again. NAKs are used only to

indicate errors in the communications link, not errors in any higher-layer protocol.

4 Overview of Application Protocols

4.1 Packet Sequences

Each of the Application protocols is defined in terms of a packet sequence, which defines the order and types of

packets exchanged between two devices, including direction of the packet, Packet ID, and packet data type. An

example of a packet sequence is shown below:

N Direction Packet ID Packet Data Type

0 Server to Client First_Packet_ID First_Data_Type

1 Server to Client Second_Packet_ID Second_Data_Type

2 Server to Client Third_Packet_ID Third_Data_Type

3 Client to Server Fourth_Packet_ID Fourth_Data_Type

4 Client to Server Fifth_Packet_ID Fifth_Data_Type

Need help? Email FleetSupport@garmin.com Page 10 001-00096-00 Rev. S

In this example, there are five packets exchanged: three from Server to Client and two from the Client to the Server.

Each of these five packets must be acknowledged, but the acknowledgement packets are omitted from the table for

clarity.

The first column of the table shows the packet number (used only for reference; this number is not encoded into the

packet). The second column shows the direction of each packet transfer. The third column shows the Packet ID

value. The last column shows the Packet Data Type.

4.2 Undocumented Application Packets

The Client may transmit application packets containing packet IDs that are not documented in this specification.

These packets are used for internal testing purposes by Garmin engineering. Their contents are subject to change at

any time and should not be used by third-party applications for any purpose. They should be handled according to

the physical/link protocols described in this specification and then discarded.

5 Application Protocols

5.1 Fleet Management Protocols

Note: It is highly recommended to perform initial prototype testing with the Garmin “Fleet Management

Controller” tool (also known as the “FMC” or “PC App”), which simulates Server connectivity when

connected to a Garmin FMI Client device. This would allow a developer to observe format and sequence of

protocol packet exchanges outlined in this document. This free tool can be found in the Fleet Management

Interface Developer Kit at: http://developer.garmin.com/fleet-management/

It’s important for FMI developers to implement procedures to properly manage the FMI connection and

software versions in the field. This document accurately describes the Fleet Management Protocols, but it’s

also important to understand the underlying design intent. Below is some information is intended to inform

FMI developers of how best to begin their development work within that design intent.

Please see Sections 5.1.2, 5.1.3 and 5.1.16 of the Fleet Management Interface Control Specification for information

on the protocols that are involved in establishment of the FMI connection. The information in those sections will

help you to design a proper server implementation of the Garmin FMI. Using the information found in those

sections, please implement the following procedures:

1. The Sections 5.1.2 Enable Fleet Management Protocol is used to enable the FMI – do this until an ACK is

received in response.

2. Then you must use the Sections 5.1.3 Product ID Request – The FMI is not enabled until Product ID and

Protocol Support Data packets are received in response. If it takes too long to get a response, start over at

step 1.

3. Then periodically test for the presence of the FMI by use of the Sections 5.1.16 Ping Protocol – The

response should be a Ping Response packet. If no Ping response occurs, start over at step 1.

Once the FMI is enabled at the end of Step 3, it is ready to accept any of the FMI protocols. Step 3 is used to

monitor the FMI connection to verify that it remains in an enabled state.

Another protocol that should be used immediately after enabling the FMI is the Sections 5.2.2 Unit ID/ESN

Protocol. This will allow the server implementation of the FMI to note the Unit ID/ESN associated with the software

version number reported in the Product ID packet associated with step 2 above. When you notice that a new version

of software is associated with a particular Unit ID/ESN, then you should use the Data Deletion Protocol, described

in Section 5.1.14, with the data_deletion_data_type variable set to 0x07 in order to delete all FMI-related data. This

should be done so that the newly installed version of software does not encounter FMI data that was created by some

other version of software that likely used different type definitions for the data elements in the FMI database. Please

http://developer.garmin.com/fleet-management/

Need help? Email FleetSupport@garmin.com Page 11 001-00096-00 Rev. S

note that after performing the data deletion procedure to delete all FMI-related data, the Garmin FMI Client device

will reboot. After allowing the Garmin FMI Client device to reboot, the host system should again follow the

procedure to enable the FMI and then repopulate the FMI data as necessary.

5.1.1 Protocol Identifier

All packets related to the fleet management protocols will use the packet ID 161. The first 16 bits of data in the

application payload will identify the fleet management protocol’s specified packet. The remaining data in the

application payload will be the fleet management payload. The fleet management data types discussed in this

document will not include the fleet management packet ID in their structures. The fleet management packet ID is

implied. The following table shows the format of a fleet management packet:

Byte Number Byte Description Notes

0 Data Link Escape 16 (decimal)

1 Packet ID 161 (decimal)

2 Size of Packet Data Size of fleet management Payload + 2

3-4 Fleet Management Packet ID See Appendix 6.3

5 to n-4 Fleet Management Payload 0 to 253 bytes

n-3 Checksum 2's complement of the sum of all bytes from byte 1 to byte n-4

n-2 Data Link Escape 16 (decimal)

n-1 End of Text 3 (decimal)

5.1.2 Enable Fleet Management Protocol

By default, a Garmin device that supports fleet management will have the fleet management protocol disabled until

it receives the following packet from the Server. Only Clients that report A607 as part of their protocol support will

support the associated data type.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0000 – Enable Fleet Protocol Request fleet_features_data_type

Previous versions of this protocol had no associated data and it remains acceptable to provide no data with this

packet. In this case, the features will be set to their previous states or default states, as appropriate. The type

definition for fleet_features_data_type is shown below.

typedef struct /* D607 */

 {

 uint8 feature_count;

 uint8 reserved; /* Set to 0 */

 uint16 features[];

 } fleet_features_data_type;

The feature_count indicates the number of items in the features array. The features array contains an array of up to

126 feature IDs and whether or not the Server supports them. The lower 15 bits of each uint16 contains the Feature

ID and the high bit of these indicates whether the feature is supported or not. A value of 1 indicates that the feature

should be enabled and a 0 indicates that the feature should be disabled.

Note: If a feature is not specified on or off, it will take the value it had at the previous enable. If there was no

previous enable, there is a default value for each feature. The following table shows the ID for each available

feature and the feature’s default value.

Feature ID (decimal) Feature Name Default value

1 Unicode support Enabled

2 A607 Support Disabled*

Need help? Email FleetSupport@garmin.com Page 12 001-00096-00 Rev. S

10 Driver passwords Disabled

11 Multiple drivers Disabled

12 AOBRD Disabled**

* A607 support will be enabled automatically if either the driver passwords feature or the multiple drivers feature is

enabled, as A607 support is required for these features.

** AOBRD functionality is the optional HOS FMI protocol defined in Section 6.6, as A610 (HOS 1.0), A615 (HOS

2.0) and A619 (HOS 2.1) support.

An example packet that enables the multiple driver and driver password features follows:

Byte Number Byte Description Notes

0 DLE 16 (decimal)

1 Packet ID 161 (decimal)

2 Size of Enable Fleet Request 8 (Represents bytes 3 to 10 for this example)

3-4 Fleet Management Packet ID 0 (decimal)

5 feature_count 2 (decimal)

6 reserved 0 (decimal)

7-8 Driver passwords (Enabled) 0x800A (hexadecimal)

9-10 Multiple drivers (Disabled) 0x000B (hexadecimal)

11 Checksum 2's complement of the sum of all bytes from byte 1 to byte 10

12 DLE 16 (decimal)

13 ETX 3 (decimal)

The Server is required to enable the Fleet Management interface if any of the following conditions occurs:

• The cable connecting the Server to the Client is disconnected and then reconnected

• Whenever the Client powers on

• Whenever the Server powers on

Note: Any attempt to access the fleet management protocols will be ignored by the Client until the Fleet

Management interface is enabled. It is possible that the Client will not be listening to the communication line, so

the following procedure is recommended:

1. Server sends the Enable Fleet Protocol Request packet to the Client until an ACK packet is received

back from the Client.

2. Server sends the Product ID Request packet to the Client.

3. The Fleet Management Interface is not successfully enabled until the Product ID and Protocol Support

Data packets are received from the Client.

Note: Repeat steps 1 and 2 until step 3 is successful.

Sending the enable fleet management protocol request to a Garmin device that supports fleet management will cause

the following to occur on the Garmin device:

1. The Garmin device user interface will change so that the user can now access fleet management

options on the device like text messages and Stop list. This change will be permanent across power

cycles so that the user will have a consistent experience with the device.

2. The Garmin device will start to send PVT (position, velocity, and time) packets to the Server. PVT

packets will be discussed later in Section 5.2.4 of this document.

Need help? Email FleetSupport@garmin.com Page 13 001-00096-00 Rev. S

Note: See Section 5.1.14 for information on disabling the fleet management interface after it has been enabled.

5.1.3 Product ID and Support Protocol

The Product ID and Support protocol is used to query the Client to find out its Product ID, software version number,

and supported protocols and data types. The packet sequence for the Product ID and support protocol is shown

below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0001 – Product ID Request None

1 Client to Server 0x0002 – Product ID product_id_data_type

2 Client to Server 0x0003 – Protocol Support Data protocol_array_data_type

The Client to Server Product ID receipt response contains the type definition for the product_id_data_type is

shown below.

typedef struct

 {

 uint16 product_id;

 sint16 software_version;

 } product_id_data_type;

The product_id is a unique number that represents a particular series type of Garmin device (e.g., dezlCam, fleet

660). It should not be confused with an ESN, which is unique to each device regardless of type.

Note: See Section 6.1 for a list of product_id’s and the associated Garmin series device.

-The software_version is the decimal software version number multiplied by 100 decimal (e.g. version 3.10 will be

specified with the decimal value of 310).

The Client to Server Product ID receipt response contains the type definition for the protocol_support_data_type is

shown below. The protocol_array_data_type is an array of the protocol_support_data_type. The number of

protocol_support_data_type contained in the array is determined by observing the size of the received packet data.

typedef struct

 {

 char tag;

 sint16 data;

 } protocol_support_data_type;

The tag member can have different values. The A tag describes an “application” protocol. For example, if a Client

reports a tag with an “A” and data of 602 (A602), then it supports some of the fleet management protocol defined in

this document. Each section in this document that describes a protocol will state its support A tag.

The D (data type) tags that are listed immediately after the A (application protocol) tag describe the specific data

types used by that application protocol. This allows for future growth of both the data types and the protocol. For

example, if a Client reports a tag with a “D” and data of 602, then it supports some of the fleet management data

types defined in this document. Each section in this document that describes a data type will state its support D tag.

The Server is expected to communicate with the Client using the Client’s stated application protocol and data types.

In this way, it is possible to have different generations of products in the field and still have a workable system.

5.1.4 Unicode Support Protocol

This protocol is used by the Client to determine if the Server supports Unicode characters or just regular ASCII

characters. This protocol is only supported on Clients that report A604 as part of their protocol support data. The

packet sequence for the Unicode support protocol is shown below.

Need help? Email FleetSupport@garmin.com Page 14 001-00096-00 Rev. S

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x0004 – Unicode Support Request Packet ID None

1 Server to Client 0x0005 – Unicode Support Response Packet ID None

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0005 – Unicode Support Packet ID None

The Server should respond to the Unicode support request to indicate that it supports Unicode and it is okay for the

Client to send Unicode texts to it. If the Server does not respond to the Unicode support request, the Client will

assume the Server does not support Unicode and it is not okay to send Unicode text to the Server.

Clients that don’t report A604 as part of their protocol support data do not support Unicode and the Server should

not send Unicode texts to them since they will be interpreted as ASCII text.

5.1.5 Text Message Protocols

5.1.5.1 Server to Client Text Message Protocols

There are numerous protocols available to the Server for sending text messages to the Client. The Server should

pick a text message protocol based on the type of functionality it is trying to achieve on the Client. The different

types of Server to Client text message protocols are described in detail below.

Along with regular text, symbols and limited HTML tags can be interpreted by encoding the symbol within the text

message, see the example and table below. (Note: Some PND’s may only support a subset of this symbol table.)

Example: Encoded Server text for symbol fraction one-half, (note the character “;” must always be used with the

encoded symbol).

Symbol Server encoded symbol PND display of text message

½ The depot will open in ½ hour. The depot will open in ½ hour.

Text Message Symbol Table:

Symbol Encoding Description

& & Ampersand

' ' Apostrophe

• • Bullet

¢ ¢ Cent

© © Copyright

° ° Degree

÷ ÷ Division Sign

· · Middle Dot

… … Horizontal Ellipses

½ ½ Fraction One Half

¼ ¼ Fraction One Fourth

¾ ¾ Fraction Three Fourths

> > Greater-Than

¡ ¡ Inverted Exclamation Point

¿ ¿ Inverted Question Mark

« « Left-Pointing Double Angle Quotation Mark

“ “ Left Double Quotation Mark

‘ ‘ Left Single Quotation Mark

Need help? Email FleetSupport@garmin.com Page 15 001-00096-00 Rev. S

< < Less-Than

µ µ Micro

 Non-Breaking Space

¶ ¶ Paragraph

± ± Plus Minus Sign

£ £ Pound

" " Quote

® ® Registered

» » Right-Pointing Double Angle Quotation

Mark

” ” Right Double Quotation Mark

’ ’ Right Single Quotation Mark

™ ™ Trademark

¥ ¥ Yen

Example: HTML Server text for tags.

HTML tag Server encoded HTML tag PND display of text message

bold The depot will open in one hour. The depot will open in one hour.

Line break 1.
2.</br> 1.

2.

paragraph 1.<p>2.</p> 1.

2.

5.1.5.1.1 A604 Server to Client Open Text Message Protocol

This text message protocol is used to send a simple text message from the Server to the Client. When the Client

receives this message, it either displays the message immediately, or presents a notification that a message was

received, depending on the options specified in the message. The receipt indicates whether the message was

accepted by the device; it does not imply that the message has been displayed.

Note: The Canned Message protocol can be used to give the driver a list of response choices by sending a matching

id member value. See the Server to Client Canned Response Text Message Protocol Section 5.1.5.1.3 for details.

The packet sequence for the Server to Client open text message is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to

Client

0x002a – A604 Server to Client Open Text

Message Packet ID

A604_server_to_client_open_text_msg_data_type

1 Client to

Server

0x002b – Server to Client Open Text

Message Receipt Packet ID

server_to_client_text_msg_receipt_data_type

The type definition for the A604_server_to_client_open_text_msg_data_type is shown below.

Need help? Email FleetSupport@garmin.com Page 16 001-00096-00 Rev. S

typedef struct /* D604 */

 {

 time_type origination_time;

 uint8 id_size;

 uint8 message_type;

 uint16 reserved; /* set to 0 */

 uint8 id[16]; /* 16 byte constant length */

 uchar_t8 text_message[]; /* variable length, null-terminated string, 200 bytes max */

 } A604_server_to_client_open_text_msg_data_type;

The origination_time is the time that the text message was sent from the Server. The id_size determines the number

of characters used in the id member. An id size of zero indicates that there is no message id. The id member is an

array of 8-bit integers that could represent any type of data. A message ID is required to use the Message Status

Protocol (see Section 5.1.5.2). The message_type indicates how the message should be handled on the Client

device. The allowed values for message_type are:

Value (Decimal) Behavior

0 Add message to inbox, and display a floating button indicating that a message was received.

(This is same behavior used for the A602 and A603 Server to Client text messages).

1 Display the message on the device immediately.

The type definition for the open_text_msg_receipt_data_type is shown below.

typedef struct /* D604 */

 {

 time_type origination_time;

 uint8 id_size;

 boolean result_code;

 uint16 reserved; /* set to 0 */

 uint8 id[16]; /* 16 byte constant length */

 } server_to_client_text_msg_receipt_data_type;

The origination_time, id_size, message_type, and id will be the same as the corresponding A604 Server to Client

Open Text Message packet. The result_code indicates whether the message was received and stored on the Client

device; it will be true if the message was accepted, or false if an error occurred (for example, there is already a

message with the same ID).

5.1.5.1.2 A611 Server to Client Long Text Message Protocol

The Long Text Message Protocol allows the Server to send text messages up to 2,000 bytes in length to the Client.

Text messages greater than 200 bytes will need to be segmented into additional packets by the Server. These

packets will be reassembled and stored by the Client as a single text message. The Server should send an entire text

message before attempting to send a different text message (i.e., no interleaving of segments for multiple text

messages).

The Client will acknowledge each segment using an error result_code, and send a final receipt to indicate the

message was accepted by the device (this does not imply that the message has been displayed).

Note: The Canned Message protocol can be used to give the driver a list of response choices by sending a matching

id member value. See the Server to Client Canned Response Text Message Protocol Section 5.1.5.1.3 for details.

The origination_time field is the time the text message was sent from the Server. The id_size field indicates the

number of characters of the id field. The message_type determines if the text message is displayed immediately or if

a notification icon is displayed. Either display mode occurs after the complete text message is received.

The finished_flag field indicates the last segment of a long text message. The sequence_number field starts with a

zero value for the first segment of each text message, and increments for each additional packet segment of that text

message. Every packet segment of a long text message is required to have the same id field, which differentiates

each complete text message from all other text messages.

Need help? Email FleetSupport@garmin.com Page 17 001-00096-00 Rev. S

Each packet segment is expected to fill the entire 200 byte text_message field with non-NULL data, except the last

packet, which terminates the entire data set with a NULL terminator character. The current maximum complete

Long Text Message size is 2,000 bytes (which does include the NULL terminator character).

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0..n-1 Server to Client 0x0055 – A611 Server to Client

Long Text Message Packet ID

A611_server_to_client_long_text_msg_data_type

1..n Client to Server 0x0056 – Server to Client Long

Text Message Receipt Packet ID

server_to_client_long_text_msg_receipt_data_type

The type definition for the A611_server_to_client_long_text_msg_data_type is shown below.

typedef struct /* D611 */

 {

 time_type origination_time; /* Time sent from Server */

 uint8 id_size; /* Number of characters used in id member */

 uint8 message_type ; /* 0 = Notify with icon, 1 = Display immediately */

 boolean finished_flag; /* 0 = Indicates additional packet segment, */

 /* 1 = Indicates final packet segment */

 uint8 sequence_number; /* Indicates packet segment number, 0 = First packet */

 uint8 id[16]; /* 16 byte constant length */

 uchar_t8 text_message[200]; /* 200 bytes, or less variable length in final segment */

 } A611_server_to_client_long_text_msg_data_type;
The type definition for the server_to_client_long_text_msg_receipt_data_type is shown below.

typedef struct /* D611 */

 {

 time_type origination_time; /* Original time sent from Server */

 uint8 id_size; /* Number of characters used in the id member */

 uint8 result_code; /* 0 = Message accepted, non-zero = Error occurred, */

 /* see code list below */

 boolean finished_flag; /* 0 = Indicates additional packet, 1 = Final packet */

 uint8 sequence_number; /* Indicates packet segment number of a long message, */

 /* 0 = First packet segment */

 uint8 id[16]; /* 16 byte constant length */

 } server_to_client_long_text_msg_receipt_data_type;

Note: The protocol should not continue if the result_code is nonzero.

The values for result_code are listed below:

Value (Decimal) Result Code

0 No Error

1 Invalid ID size Error

2 Non-Zero Sequence Number Error

3 Storage Error 0

4 ID In Use Error 1

5 Storage Error 1

6 Wrong ID size Error

7 Wrong ID Error

8 Wrong Sequence Number Error

9 Wrong Origination Time Error

10 Wrong Message Type

11 Exceeded 2,000 bytes of text

12 Storage Error 2

13 Storage Error 3

Need help? Email FleetSupport@garmin.com Page 18 001-00096-00 Rev. S

14 Storage Error 4

15 Storage Error 5

5.1.5.1.3 Server to Client Canned Response Text Message Protocol

This text message protocol is used to send a text message from the Server to the Client which requires a response to

be selected from a list.

Note: The A604 Server to Client Open Text Message protocol described in Section 5.1.5.1.1, and A611 Server to

Client Long Text Message Protocol described in Section 5.1.5.1.2 can utilize this protocol capability.

When the text message is displayed, the Client will also display a Reply button. When the Reply button is pressed,

the Client will display a list of the allowed responses. Once the user selects one of the responses, the Client will

send an acknowledgement message to the Server indicating which response was selected.

Prior to using this protocol, the Server must send the text for allowed responses to the Client using the Canned

Response List Protocols described in Section 5.1.5.4.

The packet sequence for the Server to Client Canned Response Text Message protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0028 –Canned Response List Packet ID canned_response_list_data_type

1 Client to Server 0x0029 – Canned Response List Receipt

Packet ID

canned_response_list_receipt_data_type

2 Server to Client 0x002a –A604 Server to Client Open Text

Message Packet ID

or

0x0055 –A611 Server to Client Long Text

Message Packet ID

A604_server_to_client_open_text_msg_data_type

A611_server_to_client_long_text_msg_data_type

3 Client to Server 0x002b – Client to Server Open Text

Message Receipt Packet ID

or

0x0056 – Client to Server Long Text

Message Receipt Packet ID

server_to_client_text_msg_receipt_data_type

server_to_client_long_text_msg_receipt_data_type

4 Client to Server 0x0020 – Text Message Acknowledgment

Packet ID

text_msg_ack_data_type

5 Server to Client 0x002c – Text Message Ack Receipt

Packet ID

text_msg_id_data_type

The type definition for the canned_response_list_data_type is shown below.

typedef struct /* D604/D611 */

 {

 uint8 id_size;

 uint8 response_count;

 uint16 reserved; /* set to 0 */

 uint8 id[16]; /* 16 byte constant length */

 uint32 response_id[];

 } canned_response_list_data_type;

The id_size and id are used to correlate the canned response list to the A604 Server to Client Open Text Message or

A611 Server to Client Long Text Message that follows; the id must be unique for each message sent to the device,

and cannot have a length of zero. The response_id array contains the IDs for up to 50 canned responses that the user

may select from when responding to the message. The response_count indicates the number of items in the

response_id array.

The type definition for the canned_response_list_receipt_data_type is shown below.

Need help? Email FleetSupport@garmin.com Page 19 001-00096-00 Rev. S

typedef struct /* D604/D611 */

 {

 uint8 id_size;

 uint8 result_code;

 uint16 reserved; /* set to 0 */

 uint8 id[16]; /* 16 byte constant length */

 } canned_response_list_receipt_data_type;

The id_size and id will be identical to those received using the Canned Response List packet. A result_code of zero

indicates success, a nonzero result_code means that an error occurred, according to the table below.

Note: The protocol should not continue if the result_code is nonzero.

Result Code

(Decimal)

Meaning Suggested Response

0 Success Send the text message packet.

1 Invalid response_count Send a Canned Response List packet containing between

1 and 50 response_id entries.

2 Invalid response_id Use the Set Canned Response protocol (Section 5.1.5.4.1)

to ensure all of the canned responses are on the Client,

then resend the Canned Response List packet.

3 Invalid or duplicate

message ID

Send a Canned Response List packet using a message ID

not on the Client.

The A604 Server to Client Open Text Message is described in Section 5.1.5.1.1, the A611 Server to Client Long

Text Message is described in Section 5.1.5.1.2.

The type definition for the text_msg_ack_data_type is shown below.

typedef struct /* D602/D604/D611 */

 {

 time_type origination_time;

 uint8 id_size;

 uint8 reserved[3]; /* set to 0 */

 uint8 id[16]; /* 16 byte constant length */

 uint32 msg_ack_type;

 } text_msg_ack_data_type;

The origination_time is the time that the text message was acknowledged on the Client. The id_size and id will

match the id_size and id of the applicable text message. The msg_ack_type will identify the response_id

corresponding to the response selected by the user.

The type definition for the text_msg_id_data_type is shown below.

typedef struct /* D604/D611 */

 {

 uint8 id_size;

 uint8 reserved[3]; /* set to 0 */

 uint8 id[16]; /* 16 byte constant length */

 } text_msg_id_data_type;

The id_size and id will match the id_size and id of the applicable text message.

5.1.5.2 Message Status Protocol

The Message Status Protocol is used to notify the Server of the status of a text message previously sent from the

Server to the Client. The Client will send a message status packet whenever the status changes. If the protocol is

throttled (see Section 5.1.17), the Client will only send the message status of a text message when it is requested by

the Server.

Need help? Email FleetSupport@garmin.com Page 20 001-00096-00 Rev. S

The packet sequence for the Client to Server Open Text Message is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0040 – Message Status Request Packet ID message_status_request_data_type

1 Client to Server 0x0041 – Message Status Packet ID message_status_data_type

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x0041 – Message Status Packet ID message_status_data_type

The type definition for the message_status_request_data_type is shown below.

typedef struct /* D604 */

 {

 uint8 id_size;

 uint8 reserved[3]; /* set to 0 */

 uint8 id[16]; /* 16 byte constant length */

 } message_status_request_data_type;

The id_size and id correspond to those of the message being queried; all must match for the message to be found.

The type definition for the message_status_data_type is shown below.

typedef struct /* D604 */

 {

 uint8 id_size;

 uint8 status_code;

 uint16 reserved; /* set to 0 */

 uint8 id[16]; /* 16 byte constant length */

 } message_status_data_type;

The id_size and id will be identical to those of the corresponding Message Status Request. The status_code

indicates the status of the message on the device. The following table shows the possible values for status_code,

along with the meaning of each value:

Status Code (Decimal) Meaning

0 Message is unread

1 Message is read

2 Message is not found (e.g., deleted)

5.1.5.3 Message Delete Protocol

This protocol allows the Server to delete text messages stored on the Client. The packet sequence for deleting a text

message is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to

Client

0x002D – Delete Text Message Packet ID message_delete_data_type

1 Client to

Server

0x002E – Delete Text Message Response Packet

ID

message_delete_response_data_type

The type definition for message_delete_data_type is shown below.

Need help? Email FleetSupport@garmin.com Page 21 001-00096-00 Rev. S

typedef struct /* D607 */

 {

 uint8 id_size;

 uint8 reserved[3]; /* set to 0 */

 uint8 id[16]; /* 16 byte constant length */

 } message_delete_data_type;

The id_size and id are used to specify the id of the message to be deleted.

The type definition for the message_delete_response_data_type is shown below.

typedef struct /* D607 */

 {

 uint8 id_size;

 boolean status_code;

 uint16 reserved; /* set to 0 */

 uint8 id[16]; /* 16 byte constant length */

 } message_delete_response_data_type;

The id_size and id confirm the id of the message deleted. The status_code is false if the message was found but

could not be deleted and true otherwise.

5.1.5.4 Canned Response List Protocols

These protocols are used to maintain the list of canned responses used in the Server to Client Canned Response Text

Message Protocol (Section 5.1.5.1.3).

Up to 200 canned responses may be stored on the Client, and up to 50 of these responses may be specified as

allowed for each text message. Canned responses are stored permanently across power cycles.

5.1.5.4.1 Set Canned Response Protocol

This protocol is used to set (add or update) a response in the canned response list.

The packet sequence for the Set Canned Response Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0030 – Set Canned Response Text Packet ID canned_response_data_type

1 Client to Server 0x0032 – Set Canned Response Receipt Packet

ID

canned_response_receipt_data_type

The type definition for the canned_response_data_type is described below.

typedef struct /* D604 */

 {

 uint32 response_id;

 uchar_t8 response_text[]; /* variable length, null terminated, 50 bytes max */

 } canned_response_data_type;

The response_id is a number identifying this response. If a response with the specified response_id already exists

on the device, the response text will be replaced with the response_text in this packet.

The type definition for the canned_response_receipt_data_type is shown below.

Need help? Email FleetSupport@garmin.com Page 22 001-00096-00 Rev. S

typedef struct /* D604 */

 {

 uint32 response_id;

 boolean result_code;

 uint8 reserved[3]; /* Set to 0 */

 } canned_response_receipt_data_type;

The response_id will be the same as that of the corresponding canned_response_data_type. The result_code

indicates whether the add/update operation was successful.

5.1.5.4.2 Delete Canned Response Protocol

This protocol is used to remove a canned response text from the Client device. When a canned response is deleted,

it is also removed from the list of allowed responses for any canned response text messages that the Client has not

replied to. If all allowed responses are removed from a message, the message is treated as a Server to Client Open

Text Message.

The packet sequence for the Delete Canned Response Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data

Type

0 Server to Client 0x0031 – Delete Canned Response Packet ID canned_response_delete_data_type

1 Client to Server 0x0033 – Delete Canned Response Receipt

Packet ID

canned_response_receipt_data_type

The type definition for the canned_response_delete_data_type is shown below.

typedef struct /* D604 */

 {

 uint32 response_id;

 } canned_response_delete_data_type;

The response_id identifies the response to be deleted.

The type definition for the canned_response_receipt_data_type is described in Section 5.1.5.4.1 and repeated below.

typedef struct /* D604 */

 {

 uint32 response_id;

 boolean result_code;

 uint8 reserved[3]; /* Set to 0 */

 } canned_response_receipt_data_type;

The response_id will be the same as that of the corresponding canned_response_delete_data_type. The result_code

indicates whether the delete operation was successful. This will be true if the response was removed or the response

did not exist prior to the operation; it will be false if the canned response cannot be removed.

5.1.5.4.3 Refresh Canned Response Text Protocol

This protocol is initiated by the Client to request updated response text for a particular message, or for all messages.

This protocol is only supported on Clients that report A604 as part of their protocol support data, and is throttled by

default on Clients that report A605 as part of their protocol support data. See the Message Throttling Protocols

(Section 5.1.17) to enable the Refresh Canned Response Text Protocol on these Clients.

The packet sequence for the Refresh Canned Response Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

Need help? Email FleetSupport@garmin.com Page 23 001-00096-00 Rev. S

0 Client to Server 0x0034 – Request Response Text

Refresh Packet ID

request_canned_response_list_refresh_data_type

1..n (Set Canned Response protocols)

The request_canned_response_list_refresh_data_type is shown below.

typedef struct /* D604 */

 {

 uint32 response_count;

 uint32 response_id[];

 } request_canned_response_list_refresh_data_type;

The response_count indicates the number of responses that are in the response_id array. This will always be

between 0 and 50. The response_id array contains the response IDs that should be sent by the Server using the Set

Canned Response protocol.

If response_count is zero, the Server should initiate a Set Canned Response protocol for all valid response IDs. If

response_count is greater than zero, the Server should initiate a Set Canned Response protocol for each response ID

in the array, so long as the response ID is still valid.

5.1.5.5 A607 Client to Server Open Text Message Protocol

This text message protocol is used to send a simple text message from the Client to the Server. When the Server

receives this message, it is required to send a message receipt back to the Client. The Client will only send this

protocol if the Server has enabled A607 features in the enable protocol. The packet sequence for the Server to

Client open text message is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to

Server

0x0026 – A607 Client to Server Open Text

Message Packet ID

a607_client_to_server_open_text_msg_data_type

1 Server to

Client

0x0025 – Client to Server Text Message

Receipt Packet ID

client_to_server_text_msg_receipt_data_type

The type definition for the message_link_data_type is shown below.

typedef struct /* D607 */

 {

 time_type origination_time;

 sc_position_type scposn;

 uint32 unique_id;

 uint8 id_size;

 uint8 reserved[3]; /* set to 0 */

 uint8 id[16]; /* 16 byte constant length */

 uchar_t8 text_message[]; /* variable length, null-terminated string, 200 bytes max */

 } a607_client_to_server_open_text_msg_data_type;

The origination_time is the time that the text message was sent from the Client. The scposn is the semi-circle

position at the time the message was created. If the Client did not have a GPS signal at the time the message was

created, both the lat and lon will be 0x80000000. The unique_id is the unsigned 32-bit unique identifier for the

message. The id is the ID of the Server to Client text message that this text message is responding to, if any. The

id_size is the size of the id. If the text message is not in response to any Server to Client message or no ID is

available, id_size will be 0 and the contents of id will be all 0.

5.1.5.6 Canned Message (Quick Message) List Protocols

The canned message list maintenance protocols are used to maintain the list of canned (predefined) text messages

that a Client device may send to the Server using the Quick Message feature. When sending a canned message, the

user of the Client device has the option to modify the text before sending it. The message is sent from the Client to

the Server using the A607 Client to Server Open Text Message Protocol described in Section 5.1.5.5.

Need help? Email FleetSupport@garmin.com Page 24 001-00096-00 Rev. S

Up to 120 canned messages may be stored on the Client. Canned messages are stored permanently across power

cycles.

5.1.5.6.1 Set Canned Message Protocol

The Set Canned Message Protocol is used to add or update the text of a canned message on the Client.

 The packet sequence for the Set Canned Message Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0050 – Set Canned Message Packet ID canned_message_data_type

1 Client to Server 0x0051 – Set Canned Message Receipt

Packet ID

canned_message_receipt_data_type

The type definition for the canned_message_data_type is shown below.

typedef struct /* D604 */

 {

 uint32 message_id; /* message identifier */

 uchar_t8 message[]; /* variable length, null terminated, 50 bytes max */

 } canned_message_data_type;

The message_id is a number identifying this message. The message_id is not displayed on the Client, but it is used

to control the order in which the messages are displayed: messages are sorted in ascending order by id. If a message

with the specified message_id already exists on the device, it will be replaced with the message text in this packet;

otherwise, the message will be added.

The type definition for the canned_message_receipt_data_type is shown below.

typedef struct /* D604 */

 {

 uint32 message_id; /* message identifier */

 boolean result_code; /* result (true if successful, false otherwise) */

 uint8 reserved[3]; /* Set to 0 */

 } canned_message_receipt_data_type;

The message_id is the same number in the corresponding canned_message_data_type. The result_code indicates

whether the add/update operation was successful.

5.1.5.6.2 Delete Canned Message Protocol

The Delete Canned Message Protocol is used to delete a canned message from the Client.

The packet sequence for the Delete Canned Message Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data

Type

0 Server to Client 0x0052 – Delete Canned Message Packet ID canned_message_delete_data_type

1 Client to Server 0x0053 – Delete Canned Message Receipt

Packet ID

canned_message_receipt_data_type

The type definition for the canned_message_delete_data_type is shown below.

typedef struct /* D604 */

 {

 uint32 message_id; /* message identifier */

 } canned_message_delete_data_type;

The message_id is a number identifying the message to be deleted.

Need help? Email FleetSupport@garmin.com Page 25 001-00096-00 Rev. S

The type definition for the canned_message_receipt_data_type is shown below.

typedef struct /* D604 */

 {

 uint32 message_id; /* message identifier */

 boolean result_code; /* result (true if successful, false otherwise) */

 uint8 reserved[3]; /* Set to 0 */

 } canned_message_receipt_data_type;

The message_id is the same number in the corresponding canned_message_delete_data_type. The result_code

indicates whether the delete operation was successful; this will be true if the specified message was successfully

deleted or was not on the device.

5.1.5.6.3 Refresh Canned Message List Protocol

The Refresh Canned Message List Protocol is initiated by the Client when it requires an updated list of canned

messages. In response to this packet, the Server shall initiate a Set Canned Message protocol for each message that

should be on the Client.

This protocol is only supported on Clients that report A604 as part of their protocol support data, and is throttled by

default on Clients that report A605 as part of their protocol support data. See the Message Throttling Protocols

(Section 5.1.17) to enable the Refresh Canned Message List Protocol on these Clients.

The packet sequence for the Refresh Canned Message Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x0054 – Refresh Canned Message List

Packet ID

None

1..n (Set Canned Message protocols)

5.1.5.7 Other Text Message Protocols (Deprecated)

Other Text Message protocols are described in Section 6.7.16.7.1. These protocols are deprecated, and could exist

now, but may be removed in the near future.

5.1.6 Stop (Destination) Protocols

The Stop protocols are used to inform the Client of a new destination. When the Client receives a Stop from the

Server, it displays the Stop to the user and gives the user the ability to start navigating to the Stop location. There

are four protocols available to the Server for sending Stops to the Client: the A603 Stop protocol, the A614 Path

Specific Stop protocol, the A618 Stop protocol and the (deprecated) A602 Stop protocol.

The A602 Stop protocol does not have the Stop status reporting capability, but all other Stop protocols report the

status of a Stop back to the Server. If a Client supports both the A603 and A602 Stop protocols, it is recommended

that the Server uses the A603 Stop protocol to send Stops to the Client.

The A614 Path Specific Stop protocol allows the Server to provide a series of locations to shape the route to the

Stop. Comparable to the A603 Stop protocol, the Client will report Stop status (unread, read, active…) for

Stops that are received using this protocol.

Click the hyperlink to view the Stop Status protocol and packet format ->Section 5.1.7.

The A618 Stop protocol provides the same functionality as the A603Stop protocol, and also allows the Stop Text to

extend to 2,000 bytes, which is sent to the Client using the File Transfer protocol.

Stop Stop ID Text

bytes

Stop

Status

Route

Shaping

File

Transfer

Non-Compressed

Format

Compressed

Format

Hyperlink

Need help? Email FleetSupport@garmin.com Page 26 001-00096-00 Rev. S

A603 Y 200 Y N N Y N 5.1.6.1

A614 Y 200 Y Y Y N Y 5.1.6.2

A618 Y 2,000 Y N Y Y Y 5.1.6.3

*A602 N 51 N N N Y N 6.7.4.16.7.

4.1

*A602 Stop protocol currently deprecated

5.1.6.1 A603 Stop Protocol

This protocol is used to send Stops or destinations from the Server to the Client. When the Client receives a Stop, it

will display it to the user and give the user the ability to start navigating to the Stop location.

 Note: The Client will report Stop status (unread, read, active…) for Stops it received using this protocol.

Click the hyperlink to view the Stop Status protocol and packet format ->Section 5.1.7.

The packet sequence for the A603 Stop protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0101 – A603 Stop Protocol Packet ID A603_stop_data_type

The type definition for the A603_stop_data_type is shown below.

typedef struct /* D603 */

 {

 time_type origination_time;

 sc_position_type stop_position;

 uint32 unique_id;

 uchar_t8 text[]; /* variable length, null-terminated string, 200 bytes max */

 } A603_stop_data_type;

The origination_time is the time that the Stop was sent from the Server. The stop_position is the location of the

Stop. The unique_id contains a 32-bit unique identifier for the Stop. The text member contains the text that will be

displayed on the Client’s user interface for this Stop.

If a stop with the same unique_id already exists on the device, the origination_time, stop_position and text will be

updated. If the active stop is updated, the Client will recalculate the route to the new location. Updating a stop does

not change the status; the Server must use the Stop Status Protocol described in Section 5.1.7 to change the status.

5.1.6.2 A614 Path Specific Stop (PSS) Protocol

The Path Specific Stop protocol allows the Server to create a specific route to the Stop by specifying a series of

shaping and intermediate destination points based on latitude and longitude coordinates. The Path Specific Stop

data is sent to the Client in the form of a file.

Because map data associated to the Server route shaping application may be different to the map data present on the

PND, the following guidelines are recommended when specifying shaping and destination points along the route.

Following these guidelines will increase the probability of achieving the desired path.

1. Shaping points are recommended to be placed at least 50 meters apart when shaping a route travelling the

same road segment.

2. Avoid placing shaping points on or near intersections. Placement of the point at least 25 meters from any

other road is advised.

Need help? Email FleetSupport@garmin.com Page 27 001-00096-00 Rev. S

3. Destination points are recommend to be placed at least 160 meters away from the next immediate turn

required.

4. Use of multiple shaping points along the same guidance path may not be necessary. Shaping points can be

used for purpose of identifying a new guidance maneuver (e.g., turning left) where a shaping point can be

placed just before or after a turn point. Guidelines should continue to be followed where a 25 meter

minimum distance is recommended between the placed shaping point and the intersection.

5. Avoid placing shaping and destination points on or within 25 meters of an on-ramp or exit-ramp. For

intentional exits, it should be sufficient to place the shaping point on the next road maneuver required.

6. Avoid placing shaping and destination points on or within 25 meters of an interchange, or a bridge crossing

one or more roads.

Avoid placing shaping points or destination points in a tunnel.

5.1.6.2.1 Path Specific Stop (PSS) file data format

Path Specific Stop (PSS) file format rules are as follows:

1. The file must start with PSS header data.

2. The file header must contain Stop Text.

3. A Destination Point type (not a Shaping Point) must always immediately follow the header data.

4. Following the initial Destination Point, a series of either Shaping Point or more Destination Point types can

be used.

5. The last point type must always be a Destination Point type (not a Shaping Point).

A Path Specific Stop file contains two sections, a header section, and a Destination Point/Shaping Point section.

These data sections are shown below:

Header section:

Data Type Name Description

uint32 Signature (‘P’, ‘S’, ‘R’, ‘+’) Hard-coded value to indicate the file type

uint16 Format version 0 = File format version_0

uint32 Timestamp Timestamp from Server

uint32 Unique ID number Unique ID number for this Stop assigned by the Server

uchar_t8 Stop Text Stop Name shown on device->Dispatch->My Stops (up to 200 bytes)

NOTE: The Stop Text is a NULL terminated string, and the 200 byte max field size includes the NULL terminator.

Following the NULL terminator, the next data type immediately follows (so these strings do not occupy the complete

maximum length unless the string actually requires that space).

The header must always be followed by a Destination Point type. Any other point type (e.g., Shaping Point) will

generate an error response. This initial point type (a Destination Point) is shown below, and immediately follows

the header data:

(Initial) Destination Point format:

sint32 Latitude Latitude of Destination point type (Destination must be first point)

sint32 Longitude Longitude of Destination point type (Destination must be first point)

uint8 Point Type 0 = Destination (Destination must be the first point type)

uchar_t8 Destination Name Destination Name shown on device navigation turn-by-turn text list

Need help? Email FleetSupport@garmin.com Page 28 001-00096-00 Rev. S

(up to 40 bytes including a NULL terminator, see note below)

NOTE: The Destination Name is a NULL terminated string, and the 40 bytes max field size includes a NULL

terminator. Following the NULL terminator, the next data type immediately follows (so these strings do not occupy

the complete maximum length unless the string actually requires that space). If a Desination Name is not needed, a

single NULL terminator must be used to indicate this condition.

Next, a series of Destination Points and Shaping Points can be appended to the initial Destination Point data

if needed, and a Final Destination point must end the file.

The format of a Shaping Point entry is shown below:

Shaping Point format:

Note: The maximum Shaping Point count between Destination Points = 100

sint32 Latitude Latitude of Destination point type (Destination must be first point)

sint32 Longitude Longitude of Destination point type (Destination must be first point)

uint8 Point Type 1 = Shaping (Shaping point cannot be the end Stop point type)

The format of a Destination Point entry is shown below:

Destination Point (or Final Destination Point) format:

Note: The maximum Destination Point count = 25

sint32 Latitude Latitude of Destination point type (Destination must be first point)

sint32 Longitude Longitude of Destination point type (Destination must be first point)

uint8 Point Type 0 = Destination (Can be an intermediate or final point)

uchar_t8 Destination Name Destination Name shown on device navigation turn-by-turn text list

(up to 40 bytes including a NULL terminator, see note below)

This Destination Point format is the same format as an initial Destination Point shown earlier.

NOTE: The Destination Name is a NULL terminated string, and the 40 bytes max field size includes a NULL

terminator. Following the NULL terminator, the next data type immediately follows (so these strings do not occupy

the complete maximum length unless the string actually requires that space). If a Desination Name is not needed, a

single NULL terminator must be used to indicate this condition.

5.1.6.2.2 Path Specific Stop (PSS) send to Client Protocol

This A614 protocol allows the Server to send a Path Specific Stop to the Client. Path Specific Stop files are

transferred from the Server to the Client with the same file transfer mechanism used to send GPI, AOBRD driver log

downloads, Custom Form Templates, and A618 Stop files to the Client (a Garmin device). A Path Specific Stop file

can be sent to the Client only when no other files are being transferred (being sent) to the Client. Additional

information regarding the file transfer process can be found in Section 5.1.13.1.

PSS files can potentially be very large, so the GZIP file compression method was implemented to optimize file

reception. The Server has the option to send non-compressed PSS files or GZIP compressed files (in the GZIP file

compression format), the Client will accept either format.

NOTE: PSS files can be transferred in the compressed GZIP file format or in the non-compressed format.

Any error detected during a download will halt the Path Specific Stop file transfer process, and that file will not be

saved by the Client. Once the Path Specific Stop file is downloaded to the Client, the Stop file will be analyzed for

format errors. Two distinct levels of result codes will be sent back to the Server (one code to indicate the success

of the file download process and one code to indicate the file format/content examination results) in the File

End Receipt Packet of Section 5.1.13.1.6.4.

N Direction Fleet Management Hyperlink Fleet Management Packet

Need help? Email FleetSupport@garmin.com Page 29 001-00096-00 Rev. S

Packet ID Data Type

0 Server to

Client

0x0400 – File Transfer Start

Packet ID

5.1.13.1.1 file_info_data_type

1 Client to

Server

0x0403 – File Start Receipt

Packet ID

5.1.13.1.2 file_receipt_data_type

2..n-

3

Server to

Client

0x0401 – File Data Packet ID 5.1.13.1.3 file_packet_data_type

3..n-

2

Client to

Server

0x0404 – Packet Receipt

Packet ID

5.1.13.1.4 packet_receipt_data_type

n-1 Server to

Client

0x0402 – File Transfer End

Packet ID

5.1.13.1.5 file_end_data_type

n Client to

Server

0x0405 – File End Receipt

Packet ID

5.1.13.1.6.45.1.13.1.6 path_specific_stop_file_receipt_data_type

NOTE: The File Transfer function is performed by the generic File Transfer method in Section 5.1.13.1.

After the File Transfer Receipt is sent back to the Server, the Path Specific Stop Status Info data is sent to the Server

and is described in the next section below:

5.1.6.2.2.1 Path Specific Stop (PSS) Status Info Protocol

Once the Path Specific Stop file has been processed, the Stop route information is processed and the route is

calculated using the current transportation mode set at the time the file is received. The Client calculates the Stop

route distance in meters (starting from the first destination to the final destination), which is sent back to the Server

in the path_specific_stop_info_to server_data_type definition result packet, and contains the unique_id,

distance and result_code shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to

Server

0x1220 – Path Specific Stop Status Info path_specific_stop_info_to_server_data_type

1 Server to

Client

0x1221 – Path Specific Stop Status Info Receipt path_specific_stop_info_to_client_receipt_type

typedef struct /* D614 */

 {

 uint32 unique_id; /* Unique Stop ID */

 uint32 distance; /* Calculated distance in meters (first destination to Stop)

 uint8 result_code; /* 0 = No errors, non-zero indicates error (see table below)

 } path_specific_stop_info_to_server_data_type;

NOTE: The Client will continue to send this packet (every 30 seconds) until Server responds with 0x1221 Path

Specific Stop Status Info Receipt shown below.

Error codes for the path_specific_stop_info_to_server_data_type packet are listed below:

Result Code

(Decimal)

Meaning Recommended Response

0 Success No errors

1 Incorrect number of routes Verify Stop data, send Path Specific Path file again

2 Too many routes Verify Stop data, send Path Specific Path file again

81 Calculation truncated with success No errors, but calculation truncated

82 Invalid first destination Verify Stop data, send Path Specific Path file again

83 Invalid stop destination Verify Stop data, send Path Specific Path file again

84 Calculation overflow Create two separate Path Specific Path files

85 Invalid route calculation Send Path Specific Path file again

86 Route calculation canceled by another Send Path Specific Path file again

Need help? Email FleetSupport@garmin.com Page 30 001-00096-00 Rev. S

calculation

All other Internal error Contact Garmin support

After the Server receives the distance packet, it should respond back to the Client with an acknowledge

packet that contains the unique_id. It should be noted the Client will continue to send the distance packet

every 30 seconds until the Server correctly responds with the acknowledgement

path_specific_stop_info_to_client_receipt_type definition shown below:

typedef struct /* D614 */

 {

 uint32 unique_id; /* Unique Stop ID received from the Client distance packet */

 } path_specific_stop_info_to_client_receipt_type;

All Path Specific Stops received via the A614 Path Specific Stop protocol will continue to be calculated and

navigated by the client using the transportation mode set at the time the Path Specific file was received.

5.1.6.3 A618 Stop Protocol

The A618 Stop protocol provides the same functionality as the A603 Stop protocol, but A618 allows the Stop Text

to extend up to 2,000 bytes (the A603 Stop Text has a maximum of 200 bytes). Since the A618 Stop data could

potentially exceed 256 bytes, the Server will send this new Destination (Stop) to the Client using the existing File

Transfer Protocol in Section 5.1.13.1.

5.1.6.3.1 A618 Stop file data format

The A618 Stop file must contain the following format:

Data Type Name Description

uint32 Signature (‘S’, ‘T’, ‘O’, ‘P’) Hard-coded value to indicate the file type

uint16 Format version 0 = File format version_0

uint32 Timestamp Timestamp from Server

uint32 Unique ID number Unique ID number for this Stop assigned by the Server

uchar_t8 Stop Text[up to 2,000 bytes] Text shown on device->Dispatch->My Stops (up to 2,000 bytes

including a NULL terminator)

sint32 Latitude Latitude of Destination

sint32 Longitude Longitude of Destination

5.1.6.3.2 A618 Stop send to Client Protocol

The Server has the option of either compressing the entire file (using the GZIP format) or sending a regular

non-compressed binary file. The Client will examine the file and determine if the file is compressed in GZIP

format or non-compressed binary format, and process the file accordingly. If the file is compressed and

GZIP errors are detected then the File End Receipt Packet will contain the error codes (shown in Section

5.1.13.1.6.5).

Any error detected during file download will halt the A618 Stop file transfer process, and that file will not be saved

by the Client. Once the file successfully downloads to the Client, the file will be analyzed for format errors. Two

distinct levels of result codes will be sent back to the Server (one code to indicate the success of the file download

process and one code to indicate the file format/content examination results) in the File End Receipt Packet of

Section 5.1.13.1.6.

N Direction Fleet Management

Packet ID

Hyper-

Link

Fleet Management

Packet

Need help? Email FleetSupport@garmin.com Page 31 001-00096-00 Rev. S

Data Type

0 Server to Client 0x0400 – File Transfer Start Packet ID 5.1.13.1.1 file_info_data_type

1 Client to Server 0x0403 – File Start Receipt Packet ID 5.1.13.1.2 file_receipt_data_type

2..n-3 Server to Client 0x0401 – File Data Packet ID 5.1.13.1.3 file_packet_data_type

3..n-2 Client to Server 0x0404 – Packet Receipt Packet ID 5.1.13.1.4 packet_receipt_data_type

n-1 Server to Client 0x0402 – File Transfer End Packet ID 5.1.13.1.5 file_end_data_type

n Client to Server 0x0405 – File End Receipt Packet ID 5.1.13.1.6.55.1.13.1.6 log_file_receipt_data_type

NOTE: The File Transfer function is performed by the generic File Transfer in this document. Go to the desired

section by clicking on the Hyperlink above.

5.1.7 Stop Status Protocol

This protocol is used by the Server to request or change the status of a Stop on the Client. The protocol is also used

by the Client to send the status of a Stop to the Server whenever the status of a Stop changes on the Client. The

packet sequences for the Stop status protocol are shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0210 – Stop Status Request Packet ID stop_status_data_type

1 Client to Server 0x0211 – Stop Status Data Packet ID stop_status_data_type

2 Server to Client 0x0212 – Stop Status Receipt stop_status_receipt_data_type

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x0211 – Stop Status Data Packet ID stop_status_data_type

1 Server to Client 0x0212 – Stop Status Receipt stop_status_receipt_data_type

The type definition for the stop_status_data_type is shown below.

typedef struct /* D603 */

 {

 uint32 unique_id;

 uint16 stop_status;

 uint16 stop_index_in_list;

 } stop_status_data_type;

The unique_id contains the 32-bit unique identifier for the Stop. The Server should ignore any Stop status message

with a unique_id of 0xFFFFFFFF. The stop_status will depend on the current status of the Stop on the Client or the

status the Server would like to change the Stop to. The stop_index_in_list can either represent the current position

of the Stop in the Stop list (0, 1, 2…) if the message is going from the Client to the Server or the position the Stop

should be moved to in the Stop list if the message is going from the Server to the Client. The table below defines

the stop_status and explains how the value of the stop_status affects the contents of the stop_index_in_list.

Stop Status Value

(Decimal)

Meaning

Requesting Stop

Status

0 This is the Server requesting the status of a Stop from the Client. The value of the

stop_index_in_list should be set to 0xFFFF and will be ignored by the Client.

Mark Stop As

Done

1 This is the Server telling the Client to mark a Stop as done. The value of the

stop_index_in_list should be set to 0xFFFF and will be ignored by the Client.

Activate Stop 2 This is the Server telling the Client to start navigating to a Stop. The value of the

stop_index_in_list should be set to 0xFFFF and will be ignored by the Client.

Delete Stop 3 This is the Server telling the Client to delete a Stop from the list. The value of

stop_index_in_list should be set to 0xFFFF and will be ignored by the Client.

Move Stop 4 This is the Server telling the Client to move a Stop to a new position in the list. The

value of stop_index_in_list should be set to the position the Server would like to

Need help? Email FleetSupport@garmin.com Page 32 001-00096-00 Rev. S

move the Stop to in the list.

Stop status –

Active

100 This is the Client reporting the current status of a Stop as Active. The value of

stop_index_in_list will correspond to the current position of the Stop in the list.

Stop status –

Done

101 This is the Client reporting the current status of a Stop as Done. The value of

stop_index_in_list will correspond to the current position of the Stop in the list.

Stop status –

Unread Inactive

102 This is the Client reporting the current status of a Stop as unread and inactive. The

value of stop_index_in_list will correspond to the current position of the Stop in the

list.

Stop status –

Read Inactive

103 This is the Client reporting the current status of a Stop as read and inactive. The

value of stop_index_in_list will correspond to the current position of the Stop in the

list.

Stop status –

Deleted

104 This is the Client reporting the current status of a Stop as Deleted. The Client will

return this status for any Stop not present in the Stop list. The value of

stop_index_in_list will be set to 0xFFFF and should be ignored by the Server.

The type definition for the stop_status_receipt_data_type is shown below.

typedef struct /* D603 */

 {

 uint32 unique_id;

 } stop_status_receipt_data_type;

The unique_id contains the 32-bit unique identifier for the Stop.

5.1.8 Estimated Time of Arrival (ETA) Protocol

This protocol is used by the Server to request ETA and destination information from the Client. The Client also

uses this protocol to send ETA and destination information to the Server whenever the user starts navigating to a

new destination or from an unexpected ETA re-calculation.

5.1.8.1 A623 ETA Mode Setting

This A623 protocol allows the Server to configure a Client’s mode for reporting ETA’s. The available configuration

settings are “none”, “Server dispatch destinations” (FMI Stops), “driver created destinations”, or “all destination

types”. This mode setting is saved in FMI Non-Volatile memory.

NOTE: The factory default ETA report mode is “dispatch only destinations”, and will automatically provide

ETA reports for only Server dispatch type destinations (not driver created destinations).

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0203 – ETA Set Mode Packet ID eta_set_mode_data_type

1 Client to Server 0x0204 – ETA Set Mode Receipt Packet ID eta_set_mode_data_receipt_type

Server to Client packet type definition for the eta_set_data_type is shown below.

typedef struct /* D623 */

 {

 uint8 new_setting_mode; /* 0 = Report no ETA’s */

 /* 1 = Report only Server dispatch destination ETA’s */

 /* 2 = Report only driver created destination ETA’s */

 /* 3 = Report all types of destination ETA’s */

 } eta_set_report_type;

The new_setting_mode configures the Client’s ETA reporting mode, and is saved to FMI Non-Volatile memory.

Client to Server packet type definition for the eta_set_mode_data_receipt_type is shown below. This is a response

to the Client’s processing of the Server’s ETA Set Mode request.

Need help? Email FleetSupport@garmin.com Page 33 001-00096-00 Rev. S

typedef struct /* D623 */

 {

 uint8 previous_mode_state;

 uint8 new_mode_state;

 uint8 result_code;

 } set_eta_report_type;

The previous_mode_state indicates the ETA mode setting before the Server’s request to modify it. The

new_mode_state indicates the mode after processing the Server’s request to change it. The result_code indicates the

success of the new setting request (see table below for return values).

NOTE: The previous ETA mode setting will not get modified when a setting error occurs (the new_mode_state

will be the previous_mode_state).

Result Code Meaning Recommended Response

0 Success, mode setting accepted None.

1 Setting rejected, range error Send valid setting value (see eta_set_data_type above).

2 Internal NV memory error Re-send request or clear FMI Non-Volatile memory.

5.1.8.2 ETA Reports

The ETA Report protocol supports both Server ETA requests of a destination in progress, and the autonomous

Client ETA reporting mechanism for destination navigation (see reporting criteria below).

Note: Prior to the A616 protocol firmware version, ETA’s were sent by the Client each time a device recalculation

was performed.

Note: ETA is only sent automatically based on the ETA Mode Setting in Section 5.1.8.1.

ETA design enhancements were made during the A616 protocol firmware to provide the following functionality:

ETA monitoring is performed by the FMI Client every 30 seconds, which could result in ETA packets being sent by

the Client to the Server. During Client navigation to a destination, ETA packets are sent by the Client if all of the

following conditions are true:

1. The Client is moving at a speed greater than 5 mph

2. The Client’s 30-second scheduled ETA calculation has changed by more than 15%

Note: Any new calculation delta greater than 20 minutes will be reported, and any new calculation delta

less than 5 minutes will not be reported.

3. The Client has a good GPS fix

4. The Client is more than 600 meters away from the destination

The packet sequences for the ETA protocol are shown below:

Server Requesting ETA from the Client:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0200 – ETA Data Request Packet ID None

1 Client to Server 0x0201 – ETA Data Packet ID eta_data_type

2 Server to Client 0x0202 – ETA Data Receipt Packet ID eta_data_receipt_type

Need help? Email FleetSupport@garmin.com Page 34 001-00096-00 Rev. S

Client reporting ETA to Server (due to navigating to a new Stop, or unexpected ETA re-calculation result):

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x0201 – ETA Data Packet ID eta_data_type

1 Server to Client 0x0202 – ETA Data Receipt Packet ID eta_data_receipt_type

The type definition for the eta_data_type is shown below.

typedef struct /* D603 */

 {

 uint32 unique_id;

 time_type eta_time;

 uint32 distance_to_destination;

 sc_position_type position_of_destination;

 } eta_data_type;

The unique_id is a 32-bit unsigned value that uniquely identifies the ETA message sent to the Server. The eta_time

is the time that the Client expects to arrive at the currently active destination. If the eta_time is set to 0xFFFFFFFF,

then the Client does not have a destination active. The distance_to_destination is the distance in meters from the

Client to the currently active destination. If the distance_to_destination is set to 0xFFFFFFFF, then the Client does

not have a destination active. The position_of_destination is the location of the currently active destination on the

Client.

The type definition for the eta_data_receipt_type is shown below.

typedef struct /* D603 */

 {

 uint32 unique_id;

 } eta_data_receipt_type;

The unique_id is a 32-bit unsigned value that uniquely identifies the ETA message sent to the Server.

5.1.9 Auto-Arrival at Stop Protocol

This protocol is used by the Server to change the auto-arrival criteria on the Client. The auto-arrival feature is used

on the Client to automatically detect that the user has arrived at a Stop and then to prompt the user if they would like

to mark the Stop as done and start navigating to the next Stop in the list. Once the Server sends the auto-arrival at

Stop protocol to the Client, the setting will be permanent on the Client until the Server changes it. The packet

sequence for the Auto-Arrival at Stop protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0220 – Auto-Arrival Data Packet ID auto_arrival_data_type

The type definition for the auto_arrival_data_type is shown below.

typedef struct /* D603 */

 {

 uint32 stop_time;

 uint32 stop_distance; /* in meters */

 } auto_arrival_data_type;

 The stop_time value is time in seconds for how long the Client should be stopped close to the destination before the

auto-arrival feature is activated. The default for stop_time on the Client is 30 seconds. To disable the auto-arrival

stop time, set stop_time to 0xFFFFFFFF. The stop_distance is the distance in meters for how close the Client has to

be to the destination before the auto-arrival feature is activated. The default for stop_distance on the Client is 100

meters. To disable the auto-arrival stop distance, set stop_distance to 0xFFFFFFFF. To disable the auto-arrival

feature, set both stop_time and stop_distance to 0xFFFFFFFF.

Need help? Email FleetSupport@garmin.com Page 35 001-00096-00 Rev. S

5.1.10 Sort Stop List Protocol

This protocol is used to sort all Stops in the list such that they can be visited in order in the shortest total distance

possible starting from the driver’s current location.

This protocol is only supported on Clients that report A604 as part of their protocol support data. The packet

sequence for the Auto-Arrival at Stop protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0110 – Sort Stop List None

1 Client to Server 0x0111 – Sort Stop List Acknowledgement None

5.1.11 Waypoint Protocols

There are protocols available to create, modify, and delete waypoints that appear under Favorites on the Client.

Only waypoints created through the Create Waypoint Protocol may be subsequently modified and deleted.

5.1.11.1 Create Waypoint Protocol

This protocol allows the Server to create or modify a waypoint on the Client. The packet sequence for creating a

waypoint is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0130 – Create Waypoint Packet ID waypoint_data_type

1 Client to Server 0x0131 – Create Waypoint Receipt Packet ID waypoint_receipt_data_type

The type definition for the waypoint_data_type is shown below.

typedef struct /* D607 */

 {

 uint16 unique_id;

 map_symbol symbol;

 sc_position_type posn;

 uint16 cats;

 uchar_t8 name[31]; /* 31 byte constant length, null-terminated string */

 uchar_t8 comment[]; /* variable length, null-terminated string, 51 bytes max */

 } waypoint_data_type;

The unique_id is a unique identifier for the waypoint. If the specified unique_id is already in use, then the existing

waypoint will be modified instead of creating a new waypoint. The symbol is the map symbol displayed for this

waypoint on the Client. The posn is the position of the waypoint. The cat is a bit field that indicates what categories

to put the waypoint in. For example, if the waypoint should be in categories with IDs 0 and 5, cat should have the

lowest bit and the 6th lowest bit set to 1 for a value of 33 decimal (00000000 00100001 in binary). The name is the

name of the waypoint. The comment is any other notes about the waypoint that should be displayed on the Client.

The desired category should already exist before any waypoints are added to it. Any attempt to add a waypoint to a

nonexistent category will result in an error code of 0. The added waypoint will remain out of the category.

The type definition for waypoint_receipt_data_type is shown below.

typedef struct /* D607 */

 {

 uint16 unique_id;

 boolean status_code;

 uint8 reserved; /* set to 0 */

 } waypoint_receipt_data_type;

The unique_id is the unique ID of the waypoint received. The status_code is true if the operation was successful

and false otherwise.

Need help? Email FleetSupport@garmin.com Page 36 001-00096-00 Rev. S

5.1.11.2 Waypoint Deleted Protocol

The Client sends this packet when a Fleet Management waypoint is deleted, whether the delete was initiated from

the Client side or on the Server side. The packet sequence for the Waypoint Deleted Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x0133 – Waypoint Deleted Packet ID waypoint_deleted_data_type

1 Server to Client 0x0134 – Waypoint Deleted Receipt Packet ID waypoint_deleted_receipt_data_type

The type definition for the waypoint_deleted_data_type is shown below.

typedef struct /* D607 */

 {

 uint16 unique_id;

 boolean status_code;

 uint8 reserved; /* set to 0 */

 } waypoint_deleted_data_type;

The unique_id is the unique ID of the waypoint deleted. The status_code is true if the waypoint with the specified

unique_id no longer exists. The status_code will always be true when the waypoint is deleted from the Client side.

The type definition for the waypoint_deleted_receipt_data_type is shown below.

typedef struct /* D607 */

 {

 uint16 unique_id;

 } waypoint_delete_data_type;

The unique_id is the unique ID of the waypoint deleted.

5.1.11.3 Delete Waypoint Protocol

This protocol allows the Server to delete a waypoint on the Client. The packet sequence for deleting a waypoint is

shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0132 – Delete Waypoint Packet ID waypoint_delete_data_type

1 Client to Server 0x0133 – Waypoint Deleted Packet ID waypoint_deleted_data_type

2 Server to Client 0x0134 – Waypoint Deleted Receipt Packet ID waypoint_deleted_receipt_data_type

The type definition for the waypoint_delete_data_type is shown below.

typedef struct /* D607 */

 {

 uint16 unique_id;

 } waypoint_delete_data_type;

The unique_id is the unique ID of the waypoint to be deleted.

5.1.11.4 Delete Waypoint by Category Protocol

This protocol allows the Server to delete all waypoints on the Client that belong to a particular category. The packet

sequence for deleting a waypoint is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to

Client

0x0135 – Delete Waypoint by Category Packet

ID

waypoint_delete_by_cat_data_type

1 Client to 0x0136 – Delete Waypoint by Category Receipt waypoint_delete_by_cat_receipt_data_type

Need help? Email FleetSupport@garmin.com Page 37 001-00096-00 Rev. S

Server Packet ID

The type definition for the waypoint_delete_by_cat_data_type is shown below.

typedef struct /* D607 */

 {

 uint16 cats;

 } waypoint_delete_by_cat_data_type;

The cats is a bit field which accepts multiple categories in the same way that the waypoint creation protocol does.

The type definition for the waypoint_delete_by_cat_receipt_data_type is shown below.

typedef struct /* D607 */

 {

 uint16 cats;

 uint16 count;

 } waypoint_delete_by_cat_data_type;

The cats is the same bit field that was passed to the Client. The count is the number of waypoints deleted by the

Delete Waypoint by Category protocol.

5.1.11.5 Create Waypoint Category Protocol

This protocol allows the Server to create or modify a waypoint category on the Client. The packet sequence for

creating a waypoint category is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data

Type

0 Server to

Client

0x0137 – Create Waypoint Category Packet ID waypoint_cat_data_type

1 Client to

Server

0x0138 – Create Waypoint Category Receipt Packet

ID

waypoint_cat_receipt_data_type

The type definition for waypoint_cat_data_type is shown below.

typedef struct /* D607 */

 {

 uint8 cat_id;

 char name[]; /* variable length, null-terminated string, 17 bytes max */

 } waypoint_cat_data_type;

The cat_id is an identifier for the category. Its value can be between 0 and 15. If a category with the given ID

already exists, then the existing category will be modified and no new category will be created. The name is the

category’s name.

The type definition for the waypoint_cat_receipt_data_type is shown below.

typedef struct /* D607 */

 {

 uint8 cat_id;

 boolean status_code;

 } waypoint_cat_receipt_data_type;

The cat_id is the category’s ID. The status_code is true if the operation was successful and false otherwise.

Need help? Email FleetSupport@garmin.com Page 38 001-00096-00 Rev. S

5.1.12 Driver ID and Status Protocols

These protocols are used to identify the current driver and status. A driver ID may be any text string enterable on

the keyboard. The Server specifies a list of statuses the driver can select from.

5.1.12.1 Driver ID Monitoring Protocols

The Driver ID Monitoring Protocols are used to communicate the driver ID. This ID can be set by the Server and

sent to the device, or changed by the user on the Driver Information page of the Client device.

5.1.12.1.1 A607 Server to Client Driver ID Update Protocol

The A607 Server to Client Driver ID Update Protocol is used to change the driver ID of the current driver on the

Client device. The packet sequence for the A607 Server to Client Driver ID Update Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0813 – A607 Server to Client Driver ID

Update Packet ID

driver_id_d607_data_type

1 Client to Server 0x0812 – Driver ID Receipt Packet ID driver_id_receipt _data_type

The type definition for the driver_id_d607_data_type is shown below.

typedef struct /* D607 */

 {

 uint32 change_id;

 time_type change_time; /* timestamp of status change */

 uint8 driver_idx;

 uint8 reserved[3]; /* set to 0 */

 uchar_t8 driver_id[50]; /* 50 byte constant length, null terminated string */

 uchar_t8 password[]; /* variable length, null terminated string, 20 bytes max */

 } driver_id_d607_data_type;

The change_id is a unique number per driver used to identify this status change request. The change_time is the

timestamp when the specified driver ID took effect. The driver_idx is the zero-based index of the driver to change.

If the multiple drivers feature is disabled, this should always be 0. The driver_id is the new driver_id. The

password is ignored by the Client. It is only used when the Client attempts to update the driver ID when driver

passwords are enabled.

The type definition for the driver_id_receipt_data_type is shown below.

typedef struct /* D604 */

 {

 uint32 change_id;

 boolean result_code;

 uint8 driver_idx; /* D607 only */

 uint8 reserved[2]; /* Set to 0 */

 } driver_id_receipt_data_type;

The change_id identifies the driver ID update being acknowledged. The result_code indicates whether the update

was successful. This will be true if the update was successful or false otherwise (for example, the driver_idx is out

of range). The driver_idx is the zero-based index of the driver updated.

Note: For Clients that do not report D607 support, this field is reserved and should always be set to 0.

5.1.12.1.2 A607 Client to Server Driver ID Update Protocol

The A607 Client to Server Driver ID Update Protocol is used to notify the Server when the driver changes the driver

ID via the user interface on the Client. The packet sequence for the A607 Client to Server Driver ID Update

Need help? Email FleetSupport@garmin.com Page 39 001-00096-00 Rev. S

Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x0813 – A607 Client to Server Driver ID

Update Packet ID

driver_id_d607_data_type

1 Server to Client 0x0812 – Driver ID Receipt Packet ID driver_id_receipt_data_type

The type definitions for the driver_id_d607_data_type and driver_id_receipt_data_type are described in Section

5.1.12.1.1. If driver passwords are enabled, the driver ID will not be changed on the Client until the driver ID

receipt packet is received and the result_code is true.

5.1.12.1.3 A607 Server to Client Driver ID Request Protocol

The A607 Server to Client Driver ID Request Protocol is used by the Server to obtain the driver ID currently stored

in the device. If no driver ID has been set, a zero length string will be returned in the driver_id_data_type. This

protocol is only supported on Clients that report A607 as part of their protocol support data. The packet sequence

for the Server to Client Driver ID Request Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0810 – Request Driver ID Packet ID driver_index_data_type

1 Client to Server 0x0813 – A607 Client to Server Driver

ID Update Packet ID

driver_id_d607_data_type

2 Server to Client 0x0812 – Driver ID Receipt Packet ID driver_id_receipt_data_type

The type definitions for the driver_id_d607_data_type and driver_id_receipt_data_type are described in section

5.1.12.1.1. These data types are only supported on Clients that include D607 in their protocol support data.

The type definition for the driver_index_data_type is shown below. This data type is only supported on Clients that

include D607 in their protocol support data.

typedef struct /* D607 */

 {

 uint8 driver_idx;

 uint8 reserved[3]; /* set to 0 */

 } driver_index_data_type;

The driver_idx is a zero-based index that specifies which driver’s ID to request. If multiple drivers are not enabled,

it should always be 0.

5.1.12.2 Other Driver ID Monitoring Protocols (Deprecated)

Other Driver ID Monitoring protocols are described in Section 6.7.2. These protocols are deprecated, and could

exist now, but may be removed in the near future.

5.1.12.3 Driver Status List Protocols

The Driver Status List Maintenance Protocols allow the Server to maintain (add, update, or delete) the list of driver

statuses that the user may select from. Each driver status consists of a numeric identifier and an associated text

string. In the Client user interface for the device, the numeric identifier is not displayed, and the list is presented in

ascending order by identifier. This allows the Server to control the display order.

The identifier 0xFFFFFFFF should not be used for a Server-defined status; it is used within the device and in the

Other Driver Status Monitoring protocols are described in Section 6.7.36.7.3. to indicate that the status has not been

set.

Need help? Email FleetSupport@garmin.com Page 40 001-00096-00 Rev. S

5.1.12.3.1 Set Driver Status List Item Protocol

This protocol allows the Server to set (add or update) the textual description corresponding to a particular driver

status. The driver status list may contain up to 16 items.

This protocol is only supported on Clients that report A604 as part of their protocol support data. The packet

sequence for the Set Driver Status List Item Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0800 – Set Driver Status List Item

Packet ID

driver_status_list_item_data_type

1 Client to Server 0x0802 – Set Driver Status List Item

Receipt Packet ID

driver_status_list_item_receipt_data_type

The type definition for the driver_status_list_item_data_type is shown below.

typedef struct /* D604 */

 {

 uint32 status_id; /* status identifier */

 uchar_t8 status_text[]; /* variable length, null terminated, 50 bytes max */

 } driver_status_list_item_data_type;

The status_id is a unique number corresponding to the driver status. If there is already a list item on the device with

the specified status_id, the status text is updated; otherwise, the status text is added to the list.

The type definition for the driver_status_list_item_receipt_data_type is shown below. This data type is only

supported on devices that report D604 as part of their protocol support data.

typedef struct /* D604 */

 {

 uint32 status_id; /* message identifier */

 boolean result_code; /* result (true if successful, false otherwise) */

 uint8 reserved[3]; /* Set to 0 */

 } driver_status_list_item_receipt_type;

The status_id will be the same as the status_id from the driver_status_list_item_data_type. The result_code will be

true if the status item was added to the device successfully or false otherwise (for example, the status list already

contains the maximum number of items).

5.1.12.3.2 Delete Driver Status List Item Protocol

This protocol allows the Server to delete (remove) a textual description corresponding to a particular driver status.

The Server may not remove the driver’s current status; if this occurs, the Client will report a failure.

This protocol is only supported on Clients that report A604 as part of their protocol support data. The packet

sequence for the Delete Driver Status List Item Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0801 – Delete Driver Status List Item

Packet ID

driver_status_list_item_delete_data_type

1 Client to Server 0x0803 – Delete Driver Status List Item

Receipt Packet ID

driver_status_list_item_receipt_data_type

The type definition of the driver_status_list_item_delete_data_type is shown below.

Need help? Email FleetSupport@garmin.com Page 41 001-00096-00 Rev. S

typedef struct /* D604 */

 {

 uint32 status_id; /* message identifier */

 } driver_status_list_item_delete_data_type;

The status_id identifies the list item to be deleted.

The type definition for the driver_status_list_item_receipt_data_type is defined in Section 5.1.12.3.1 and repeated

below. This data type is only supported on devices that report D604 as part of their protocol support data.

typedef struct /* D604 */

 {

 uint32 status_id; /* message identifier */

 boolean result_code; /* result (true if successful, false otherwise) */

 uint8 reserved[3]; /* Set to 0 */

 } driver_status_list_item_receipt_type;

The status_id will be the same as the status_id from the driver_status_list_item_delete_data_type. The result_code

will be true if the status item was deleted from the device or was not found or false if the status item is still on the

device (for example, the status_id corresponds to the driver’s current status).

5.1.12.3.3 Refresh Driver Status List Protocol

This protocol allows the Client to request the complete list of driver statuses from the Server. In response to this

request from the Client, the Server shall initiate a Set Driver Status List Item protocol for each item that should be in

the driver status list.

This protocol is only supported on Clients that report A604 as part of their protocol support data, and is throttled by

default on Clients that report A605 as part of their protocol support data. See the Message Throttling Protocols

(Section 5.1.17) to enable the Refresh Driver Status List Protocol on these Clients.

The packet sequence for the Delete Driver Status List Item Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x0804 –Driver Status List Refresh

Packet ID

N/A

1..n (Set Driver Status List Item protocols)

5.1.12.4 Driver Status Monitoring Protocols

The Driver Status Monitoring Protocols are used to communicate the driver status. This status can be set by the

Server and sent to the device, or changed by the user on the Driver Information page of the Client device. Before

protocols can be used, the Server must set the allowed driver statuses using the Driver Status List Protocols in

Section 5.1.12.3.

5.1.12.4.1 A607 Server to Client Driver Status Update Protocol

The Server to Client Driver Status Update Protocol is used to change the status of the current driver on the Client

device. This protocol is only supported on Clients that report A604 as part of their protocol support data. The

packet sequence for the Server to Client Driver Status Update Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0823 – A607 Server to Client Driver

Status Update Packet ID

driver_status_d607_data_type

1 Client to Server 0x0822 – Driver Status Receipt Packet ID driver_status_receipt_data_type

Need help? Email FleetSupport@garmin.com Page 42 001-00096-00 Rev. S

The type definition for the driver_status_d607_data_type is shown below. This data type is only supported on

Clients that include D607 in their protocol support data.

typedef struct /* D607 */

 {

 uint32 change_id; /* unique identifier */

 time_type change_time; /* timestamp of status change */

 uint32 driver_status; /* ID corresponding to the new driver status */

 uint8 driver_idx;

 uint8 reserved[3]; /* set to 0 */

 } driver_status_d607_data_type;

The change_id is a unique number which identifies this status update message. The change_time is the timestamp

when the specified driver status took effect. The driver_idx is the zero-based index of the driver to change. If the

multiple drivers feature is disabled, this should always be 0.

The type definition for the driver_status_receipt_data_type is shown below. This data type is only supported on

Clients that include D604 in their protocol support data.

typedef struct

 {

 uint32 change_id;

 boolean result_code;

 uint8 driver_idx; /* D607 only */

 uint8 reserved[2]; /* Set to 0 */

 } driver_status_receipt_data_type;

The change_id identifies the status update being acknowledged. The result_code indicates whether the update was

successful. This will be true if the update was successful or false otherwise (for example, the driver_status is not on

the Client). The driver_idx is the zero-based index of the driver updated.

Note: For Clients that do not report D607 support, this field is reserved and should always be set to 0.

5.1.12.4.2 A607 Client to Server Driver Status Update Protocol

The Client to Server Driver Status Update Protocol is used to notify the Server when the driver changes the driver

status via the user interface on the Client. This protocol is only supported on Clients that report A604 as part of

their protocol support data. The packet sequence for the A607 Client to Server Driver Status Update Protocol is

shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x0823 – A607 Client to Server Driver Status

Update Packet ID

driver_status_data_d607_type

1 Server to Client 0x0822 – Driver Status Receipt Packet ID driver_status_receipt_data_type

The type definitions for the driver_status_d607_data_type and driver_status_receipt_data_type are described in

Section 5.1.12.4.1. These data types are only supported on Clients that include D604 in their protocol support data.

5.1.12.4.3 A607 Server to Client Driver Status Request Protocol

The Server to Client Driver Status Request Protocol is used by the Server to obtain the driver status currently stored

in the device. If no driver status has been set, an ID of 0xFFFFFFFF will be returned as the driver status. This

protocol is only supported on Clients that report A604 as part of their protocol support data. The packet sequence

for the A607 Server to Client Driver Status Request Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0820 – Request Driver Status Packet ID driver_index_data_type

1 Client to Server 0x0823 – A607 Client to Server Driver Status

Update Packet ID

driver_status_d607_data_type

Need help? Email FleetSupport@garmin.com Page 43 001-00096-00 Rev. S

2 Server to Client 0x0822 – Driver Status Receipt Packet ID driver_status_receipt_data_type

The type definition for the driver_status_d607_data_type and driver_status_receipt_data_type are described in

Section 5.1.12.4.1. The type definition for the driver_index_data_type is described in Section 5.1.12.1.3. These

data types are only supported on Clients that include D607 in their protocol support data.

5.1.12.5 Other Driver Status Monitoring Protocols (Deprecated)

Other Driver Status Monitoring protocols are described in Section 6.7.36.7.3. These protocols are deprecated, and

could exist now, but may be removed in the near future.

5.1.13 File Transfer Protocols

The following protocols are used to transfer files between the Server and Client, and allow the Server to obtain

information about the files on the Client device.

5.1.13.1 Server to Client - File Transfer Protocol

This protocol sends a file from the Server to Client. The Server initially divides the file into small data packets

(each packet contains Header data and up to 245 bytes of file data), and sends the data packets one by one to the

Client using the protocol described below.

The Client saves the data packet(s) to a temporary file, and acknowledges each packet as it is received. After the

final data packet of the file is received by the Client, the CRC32 is checked, and the file is saved and processed.

Lastly, a final end-of-file acknowledgment packet is sent to the Server, which indicates the success of the complete

file transfer and processing of the file.

Note: Several file types are received and processed by the Client using this generic file transfer procedure.

The File Transfer Protocol packet sequence is listed below as three distinct transfer stages. The first stage initiates

the file transfer process:

N Direction Fleet Management Packet ID Hyper-

link

Fleet Management

Packet Data Type

0 Server to Client 0x0400 – File Transfer Start Packet ID 5.1.13.1.1 file_info_data_type

1 Client to Server 0x0403 – File Start Receipt Packet ID 5.1.13.1.2 file_receipt_data_type

…next, repeat the following Server and Client data stage until all data is sent:

2..n-3 Server to

Client

0x0401 – File Data Packet ID 5.1.13.1.3 file_packet_data_type

3..n-2 Client to

Server

0x0404 – Packet Receipt Packet

ID

5.1.13.1.4 packet_receipt_data_type

…all file data was sent, so end the file transfer sequence as shown below:

n-1 Server to Client 0x0402 – File Transfer End Packet ID 5.1.13.1.5 file_end_data_type

n Client to Server 0x0405 – File End Receipt Packet ID 5.1.13.1.6 file_receipt_data_type

NOTE: Each of the packets in the table above will be discussed below. Go to the desired section by clicking on

the Hyperlink above.

Need help? Email FleetSupport@garmin.com Page 44 001-00096-00 Rev. S

5.1.13.1.1 Server to Client - Packet ID: 0x0400 - File Transfer Start

This File Transfer Start step initiates a file transfer from the Server to the Client. The data needed to perform this

step is shown in the type definition file_info_data_type below, and should be sent to the Client.

typedef struct

 {

 uint32 file_size;

 uint8 file_version_length;

 uint8 file_type; /* See table below */

 uint8 reserved[2]; /* Set to 0 */

 uint8 file_version[16]; /* 16 byte constant length */

 } file_info_data_type;

The file_size is the size of the file that will be transferred, in bytes. The maximum file size is limited by the amount

of available space on the device. The file_version contains up to 16 bytes of arbitrary data to be associated with the

file being transmitted, as a version number or for other purposes. The file_version_length indicates the number of

bytes of file_version that are valid. The file_type is the type of file being transferred to the Client, and is shown

below:

File Type Meaning

0 GPI File

1 A610 AOBRD Event Log File

2 A612 Custom Form Template

3 A614 Path Specific Stop

4 A615 IFTA

5 A618 Stop

Go to packet sequence table, click here> 5.1.13.1

5.1.13.1.2 Client to Server - Packet ID: 0x0403 - File Start Receipt

Once the Client correctly receives the File Transfer Start packet from the previous step, the Client responds back to

the Server with a receipt packet. The receipt data type definition file_receipt_data_type shown below is created by

the Client, and sent back to the Server. Note, the file_type from the File Transfer Start data is also included in the

response.

typedef struct

 {

 uint8 result_code;

 uint8 file_type; /* See table below */

 uint8 reserved[2]; /* Set to 0 */

 } file_receipt_data_type;

The file_type will be identical to the value received in the File Transfer Start Packet ID. The result_code indicates

whether the operation was successful. Result codes and their meanings are described in the table below. At a

minimum, the Server must differentiate between a result code of zero, indicating success, and a non-zero result code,

indicating failure.

File Type Meaning

0 GPI File

1 A610 AOBRD Event Log File

2 A612 Custom Form Template

3 A614 Path Specific Stop

4 A615 IFTA

5 A618 Stop

Need help? Email FleetSupport@garmin.com Page 45 001-00096-00 Rev. S

Result Code

(Decimal)

Meaning Recommended Response

0 Success None.

2 Insufficient space on

device

The user of the device should remove any unnecessary files to make

space available.

3 Unable to open file Send a correct file.

4 No transfer in progress The Server should resend the GPI File Transfer Start packet.

5 Transfer not allowed Try again later or wait for a file request before trying again.

6 Invalid file type detected Send correct file type.

8 File Operation error Verify that the file can be opened when transferred to a device using

a local connection such as USB or an SD card.

9 File Operation error The Server should restart the entire file transfer.

13 Busy Path Specific Stop file type detected, but currently busy. Try again

later.

Go to packet sequence table, click here> 5.1.13.1

5.1.13.1.3 Server to Client - Packet ID: 0x0401 - File Data

After the Server receives the Client’s File Start Receipt packet, the Server sends File Data packets to the Client.

These packets contain the actual file data. The type definition for the file_packet_data_type is shown below.

Note: The file_data is limited to 245 bytes. If a file contains more than 245 bytes then multiple file data

packets will be required to be sent.

typedef struct

 {

 uint32 offset; /* offset of this data from the beginning of the file */

 uint8 data_length; /* length of file_data (0..245) */

 uint8 file_type; /* type of file being tranferred */

 uint8 reserved[2]; /* Set to 0 */

 uint8 file_data[245 max]; /* File data, 245 bytes maximum per packet, file_data[] greater */

 /* than 245 bytes will require additional packets to be sent */

 } file_packet_data_type;

The offset indicates the position that should be written in the file; the first byte of the file has offset zero. The

data_length indicates the number of bytes of file data that are being transmitted in this packet. The file_type will be

identical to the value received in the File Transfer Start Packet ID. The file_data is the actual data chunk to be

written to the file.

File Type Meaning

0 GPI File

1 A610 AOBRD Event Log File

2 A612 Custom Form Template

3 A614 Path Specific Stop

4 A615 IFTA - Not sent to Server

5 A618 Stop

Note: The Server must send file packets in ascending order by offset. The Server may vary data_length from

packet to packet to suit the needs of the application.

Go to packet sequence table, click here> 5.1.13.1

5.1.13.1.4 Client to Server - Packet ID: 0x0404 – Data Packet Receipt

The Client responds to File Data packets sent from the Server with a Data Packet Receipt packet. The type

definition for the packet_receipt_data_type is shown below.

Need help? Email FleetSupport@garmin.com Page 46 001-00096-00 Rev. S

typedef struct

 {

 uint32 offset; /* offset of data received */

 uint32 next_offset; /* offset of next data the Server should send */

 } packet_receipt_data_type;

The offset is the offset of the file packet received, which is the same as the offset of the corresponding

file_packet_data_type that contained the file data from the Server. The next_offset indicates the offset that the

Server should use when sending the next chunk of file data. The offset and the next_offset are to be interpreted as

follows:

• Normally, the next_offset will be equal to the sum of the offset and the data_length from the corresponding

file_packet_data_type.

• If the next_offset is equal to the size of the file, all file data has been received.

• If the next_offset is less than the offset, the Client has rejected the file data, as the data beginning at

next_offset has not yet been received.

• If the next_offset is equal to offset, a temporary error has occurred; the Server should resend the data

packet.

• If the next_offset is equal to 0xFFFFFFFF hexadecimal (4294967295 decimal) a severe error has occurred;

the transfer should be aborted.

These rules enable a simple mechanism for event-driven file transfer, when the Server receives the

packet_receipt_data_type, it should send the file data beginning at next_offset, unless an error has occurred or the

entire file has been sent. If this approach is taken, the Server should also check the offset received against the offset

sent; if they do not match, the receipt packet should be ignored, as it indicates a delayed receipt after the Server

retransmitted a packet.

Go to packet sequence table, click here> 5.1.13.1

5.1.13.1.5 Server to Client - Packet ID: 0x0402 - File Transfer End

The File Transfer End packet is sent by the Server when all of the file data has been successfully sent to the Client.

This packet contains the file CRC value for the complete file that was sent from the Server, so the Client will now

verify the CRC value against the received file.

The type definition for the file_end_data_type is shown below.

typedef struct

 {

 uint32 crc; /* CRC of entire file as computed by UTL_calc_crc32 */

 } file_end_data_type;

The crc is the CRC32 checksum of the entire file. The CRC32 algorithm is included in an Appendix (Section 6.5)

and in electronic form in the Fleet Management Interface Developer Kit.

Go to packet sequence table, click here> 5.1.13.1

5.1.13.1.6 Client to Server - Packet ID: 0x0405 - File End Receipt

The File End Receipt packet is sent by the Client to Server following the reception of File Transfer End packet and

any Client post- processing of the File Transfer data. Typically each file_type received by the Client requires

specific post-processing, which is described below by file_type.

Once the post-processing has completed, a receipt packet is generated by the Client and sent back to the Server to

indicate the results of the post-processing by the Client.

Need help? Email FleetSupport@garmin.com Page 47 001-00096-00 Rev. S

Refer to receipt format based by File Type of file sent:

File Type Meaning file_type Hyperlink

0 GPI File 5.1.13.1.6.1

1 A610 AOBRD Event Log File 5.1.13.1.6.2

2 A612 Custom Form Template 5.1.13.1.6.3

3 A614 Path Specific Stop 5.1.13.1.6.4

4 A615 IFTA – Not sent to Server N/A

5 A618 Stop 5.1.13.1.6.5

5.1.13.1.6.1Post Processing Receipt - GPI file type

typedef struct

 {
 uint8 result_code; /* 0 = No transfer errors, non-zero shows error */
 uint8 file_type; /* GPI file type = 0 */
 uint8 reserved[2]; /* Set to 0 */
 } gpi_file_receipt_data_type;

Result Code Meaning Recommended Response

0 Success, GPI file downloaded None

1 CRC error The Server should re-send the GPI file

4 File not transferred error The Server should re-send the GPI file

5 GPI file contents error Send a valid GPI file.

6 Invalid file type detected Send a GPI file type.

7 Unable to process the GPI file The Server should re-send the GPI file

8 File Open error The Server should re-send the file

9 File Close error The Server should re-send the file

10 File Finalize error The Server should re-send the file

11 File not processed The Server should re-send the file

13 Busy error The Server should re-send the file

15 Receive rename error The Server should re-send the file

All others Garmin specific errors Contact Garmin Support

Go to packet sequence table, click here> 5.1.13.1

5.1.13.1.6.2 Post Processing Receipt - A610 AOBRD Event file type

During an AOBRD driver login session, an AOBRD Driver Status Change Log file is requested by the Client. The

log file receipt is sent to the Server following log processing by the Client.

typedef struct /* D610 */

 {

 uint8 result_code;

 uint8 multi_use; /* If result_code is NOT = 0 or 5 then it’s file_type */

 /* If result_code = 0 or 5 then use AOBRD Parsing Results below */

 uint16 record_counter; /* Last record read in log file */

 } log_file_receipt_data_type;

The result_code indicates whether the operation was successful. Result codes and their meanings are described in

the table below. At minimum, the Server must differentiate between a result code of zero, indicating success, and a

nonzero result code, indicating failure.

Result Code Meaning Recommended Response

0 Success, AOBRD log file downloaded None

1 CRC error The Server should re-send the file

Need help? Email FleetSupport@garmin.com Page 48 001-00096-00 Rev. S

3 Unable to process Send an AOBRD file from a Client request

4 File not transferred error The Server should re-send the file

5 AOBRD file contents error multi_use field represents AOBRD

Parsing Results in table below

6 Invalid file type detected Send an AOBRD file type

8 File Open error The Server should re-send the file

9 File Close error The Server should re-send the file

10 File Finalize error The Server should re-send the file

11 File not processed The Server should re-send the file

12 GZIP error Server should fix GZIP file or re-send

13 Busy error The Server should re-send the file

15 Receive rename error The Server should re-send the file

All others Garmin specific errors Contact Garmin Support

After a file is received, parsing is performed, which halts on the first error found (determined when result_code = 5)

along with an error code set in the multi_use field to reflect the Client’s AOBRD Parsing Results. The

record_counter indicates the faulty record that stopped the processing within that log file. (If no error occurs, the

record_counter indicates the total number of records processed.)

AOBRD

Parsing

Results

(Decimal)

Error Type Text Error Meaning

0 No errors None

1 Unused Not used in log file receipts

2 Unable to open file The Server should restart the entire file transfer

3 Internal file system

error

The user of the device should remove any unnecessary files to make

space available. The Server should restart the entire file transfer

4 Invalid record type Record entry is not a Drive Status Change record

5 Wrong record version Record entry has an invalid record version, and cannot be read

6 Unexpected record data Record did not contain the correct data to allow processing

7 Invalid text length Record contained a text string field that was too large

8 Unused data text length Record contained an unused text string field that was too large

9 Non-printable text Record contained non-printable text in a text string

10 Internal storage error_1 Initial data storage setup error

11 Non-zero timestamp First record contained a timestamp value of zero

12 Wrong driver log Wrong driver ID contained in first record

13 No driver profile found Internal error of not finding a driver’s profile in system

14 Internal storage error_2 Initial data storage container error

15 Wrong driver record Following first record, an invalid driver ID was found in a record

16 Invalid timestamp Record timestamp was not greater (newer) than previous record

17 Invalid driver status Record contained an invalid old driver status or new driver status

18 Invalid status link Record old driver status did not match new status of previous record

19 Internal storage error_3 Unable to store a driver record

20 Invalid last driver status Last record in log did not set new driver status to “OFF DUTY”

21 Internal storage error_4 Could not store the log entries

22 Driver status error_1 Record contained unknown status data

23 Driver status error_2 Record contained unknown status data

24 Driver status error_3 Record contained unknown status data

25 Driver status error_4 Record contained unknown status data

Go to packet sequence table, click here> 5.1.13.1

Need help? Email FleetSupport@garmin.com Page 49 001-00096-00 Rev. S

5.1.13.1.6.3 Post Processing Receipt – A612 Custom Form file type

After the Client processes the Custom Form Template file, the Client to Server type definition for the

custom_form_file_receipt_data_type is sent to the Server (shown below) to report the success status of the received

Custom FormTemplate.

typedef struct /* D612 */

 {
 uint8 result_code; /* 0 = No transfer errors, non-zero shows error */
 uint8 multi_use; /* If result_code is NOT = 0 or 11 then it’s file_type */
 /* If result_code = 0 or 11 then use CF Parsing Results below */

 uint16 last_line_number; /* Last line processed of Custom Form Template */
 } custom_form_file_receipt_data_type;

Result Code

(Decimal)

Meaning Recommended Response

0 Success, Custom Form downloaded None

1 CRC error Server should resend Custom Form file

4 File not transferred error Server should resend Custom Form file

5 Custom Form file contents error See Custom Form Return Code (below), and send a

valid Custom Form file

6 Invalid file type detected Send a Custom Form file type

8 File Open error Server should re-send the file

9 File Close error Server should re-send the file

10 File Finalize error Server should re-send the file

11 File not processed multi_use field represents CF Parsing Results in table

below

12 Invalid GZIP file format Server should fix GZIP file or re-send the file

13 Busy error Server should re-send the file

14 Receive Signature error Server should re-send the file

15 Receive rename error Server should re-send the file

All others Garmin specific errors Contact Garmin Support

NOTE: Table below only valid when result_code is set to 0 or 11 (decimal). This table uses multi_use to

indicate the CF file parsing results.

CF Parsing

Results

(Decimal)

Meaning Recommended Response

0 Success, Template downloaded None

11 Form element is incomplete Complete the element, and re-send

12 Form title length is too long Correct length, and re-send

13 Item element is incomplete Complete the element, and re-send

14 An Item elements parent is not a Form

element

Correct the element, and re-send

15 Item ID is used more than once Fix the ID’s, and re-send

16 Item title length is too long Correct title length, and re-send

17 Item default value length is too long Correct value length, and re-send

18 Item count is out of range Fix item count, and re-send

19 A Type elements parent is not an Item

element

Fix Type element, and re-send

20 Type count is out of range Fix Type count, and re-send

21 Text length is out of range Fix Text length, and re-send

22 Placeholder text is too long Correct text length, and re-send

23 Integer length is out of range Correct integer length, and re-send

24 Minimum integer value range error Correct integer value, and re-send

Need help? Email FleetSupport@garmin.com Page 50 001-00096-00 Rev. S

25 Maximum integer value range error Correct integer value, and re-send

26 Minimum integer value is greater than

the maximum integer value

Correct integer value, and re-send

27 Option element is incomplete Add required values, and re-send

28 An Option elements parent is not a single

select or multiple select element

Fix Option element, and re-send

29 Option ID is used more than one time for

a given Item

Fix Option ID’s, and re-send

30 Option title length is too long Option title length, and re-send

31 Option count is out of range for an item Fix Option count, and re-send

32 Month value is out of range Fix Month value, and re-send

33 Day value is out of range Fix Day value, and re-send

34 Year value is out of range Fix Year value, and re-send

35 Number of days in the month is not valid Fix Day count of Month, and re-send

36 “Use Current” is set to False and no date

was specified

Fix date or set “Use Current” to True,

and re-send

37 Hour value is out of range Fix Hour value, and re-send

38 Minute value is out of range Fix Minute value, and re-send

39 Second value is out of range Fix Second value, and re-send

40 “Use Current” is set to False and no time

was specified

Fix time or set “Use Current” to True,

and re-send

41 Unknown form Item type Error may be indicated by

last_line_number in structure

42 Picture count is out of range Use maximum allowed picture count

101 - 139 XML Parsing Error Ensure correct XML data, and re-send

205 Exceeds 30 Templates on device Server should first delete a Template

on device

Go to packet sequence table, click here> 5.1.13.1

5.1.13.1.6.4 Post Processing Receipt – A614 Path Specific Stop (PSS) file type

After the Client processes the Path Specific Stop file, the Client to Server type definition for the

path_specific_stop_file_receipt_data_type is sent to the Server (shown below) to report the success status of the

received Path Specific Stop.

typedef struct /* D614 */

 {
 uint8 result_code; /* 0 = No transfer errors, non-zero is error */
 uint8 multi_use; /* If result_code is NOT = 0 or 11 then it’s file_type */
 /* If result_code = 0 or 11 then use PSS Return Code below */

 uint16 path_specific_stop_last_point_number; /* Last processed point (1=First point) */
 } path_specific_stop_file_receipt_data_type;

Below: Receipt data from the Fleet Management Controller when using “View Packet Log”, point number = 26

Need help? Email FleetSupport@garmin.com Page 51 001-00096-00 Rev. S

Result Code

 (Decimal)

Meaning Recommended Response

0 Success, PSS file downloaded None

1 CRC error Server should re-send the file

4 File not transferred error Server should re-send the file

5 PSS file contents error See PSS Return Code (below), and send a valid PSS file

6 Invalid file type detected Send a PSS file type

8 File Open error Server should re-send the file

9 File Close error Server should re-send the file

10 File Finalize error Server should re-send the file

11 File contents error multi_use field represents PSS Return Code in table

below

12 Invalid GZIP file format Server should resend the file

13 PSS busy, already processing Server should re-send the file

14 Receive Signature error Server should re-send the file

15 Receive rename error Server should re-send the file

All others Garmin specific errors Contact Garmin Support

NOTE: Table below only valid when result_code is set to 0 or 11 (decimal). This table indicates the PSS file

parsing results.

PSS Return

Code

(Decimal)

Meaning Recommended Response

0 Success, PSS file downloaded No errors

1 Unexpected signature Send a correct signature

2 Unexpected version Send a correct version

3 Zero length Stop Text name Include a Stop Text name in every PSS file

4 N/A Contact Garmin support

5 Exceeded text maximum length Send a text string within the maximum values

6 Invalid unique ID Send ID’s other than 0xFFFF FFFF

7 Invalid Latitude value Send a valid Latitude value

Need help? Email FleetSupport@garmin.com Page 52 001-00096-00 Rev. S

8 Invalid Longitude value Send a valid Longitude value

9 Invalid point type (non-Shaping or non-

Destination) found

Send valid point type values of

 (0 = Destination, 1 = Shaping)

10 First point type not a Destination Send the first point type as a Destination

Type

11 Last point type not a Destination Send the last point type as a Destination Type

12 Exceeded maximum number of Shaping

points

Send a maximum of 100 Shaping points

 between Destinations

13 Exceeded maximum number of Destination

points

Send a maximum of 25 Destination points per

Stop

14 Exceeded maximum total of Shaping and

Destination points

Send less than the total maximum allowed

points per Stop

15 Less than 2 destination points found Send 2 or more destinations in file

All others Garmin specific errors Contact Garmin support

Once the Path Specific Stop file has been processed, the Stop route information is processed. The Client calculates

the Stop route distance in meters (starting from the first destination to the final destination), which is sent back to the

Server (see Section 5.1.6.2.2.1).

Go to packet sequence table, click here> 5.1.13.1

5.1.13.1.6.5 Post Processing Receipt – A618 Stop file type

After the Client processes the A618 Stop file, the Client to Server type definition for the

path_specific_stop_file_receipt_data_type is sent to the Server (shown below) to report the success status of the

received A618 Stop.

typedef struct

 {
 uint8 result_code; /* 0 = No transfer errors, non-zero shows error (see below) */
 uint8 multi_use /* If result_code is NOT = 0 or 11 then it’s a file_type */
 /* If result_code = 0 or 11 then use Stop Return Code below */

 uint16 reserved; /* Set to 0 */
 } a618_stop_file_receipt_data_type;

result_code

(Decimal)

Meaning Recommended Response

0 Success, Stop file downloaded None

1 CRC error Server should re-send file

3 Invalid file Server should re-send file

4 File not transferred error Server should re-send file

5 File not transferred error Server should re-send file

6 Invalid file type detected Send a Stop file type.

8 File Open error Server should re-send file

9 File Close error Server should re-send file

10 File Finalize error Server should re-send the file

11 File contents error multi_use field represents Stop Return Code from

table below

12 GZIP error Server should re-send file

13 Busy error Server should re-send file

14 Receive Signature error Server should re-send file

15 Receive rename error Server should re-send file

All others Garmin specific errors Contact Garmin support

Need help? Email FleetSupport@garmin.com Page 53 001-00096-00 Rev. S

NOTE: Table below only valid when result_code is set to 0 or 11 (decimal). This table indicates the Stop file

parsing results.

Stop Return

Code

Meaning Recommended Response

0 Success, file processed None

1 Unexpected signature Send a correct signature

2 Unexpected version Send a correct version

3 Zero length Stop Text name Include a Stop Text name in every Stop file

5 Exceeded text maximum length Send a text string within the maximum value

6 Invalid unique ID Send ID’s other than 0xFFFF FFFF

7 Invalid Latitude value Send a valid Latitude value

8 Invalid Longitude value Send a valid Longitude value

All others Garmin specific errors Contact Garmin support

Go to packet sequence table, click here> 5.1.13.1

5.1.13.2 Client to Server File Transfer Protocol

This protocol is used to send a file from the Client to Server. This protocol is essentially the same as the Server to

Client File Transfer Protocol defined in Section 5.1.13.1, except the roles of the Client and Server are now reversed.

The Client initially divides the file data into small data packets (each packet contains Header data and up to 245

bytes of file data), and sends the data packets one by one to the Server using the protocol described below. The

Server saves the data packet(s), and acknowledges each packet as it is received.

After the final data packet of the file is received by the Server, the CRC32 of the received file is checked. Lastly a

final end-of-file acknowledgment packet is sent to the Client, which indicates the success of the complete file

transfer.

Note: Currently, only the D610-AOBRD Event Log file of FMI Hours of Service (HOS), D612-Custom Forms

Submit, and D616-IFTA Files can be transferred from the Client to the Server.

The File Transfer Protocol packet sequence is listed below as three distinct transfer stages. The first stage initiates

the file transfer process:

N Direction Fleet Management Packet ID Hyper-

link

Fleet Management

Packet Data Type

0 Client to Server 0x0400 – File Transfer Start Packet ID 5.1.13.2.1 file_info_data_type

1 Server to Client 0x0403 – File Start Receipt Packet ID 5.1.13.2.2 file_receipt_data_type

…next, repeat the following Server and Client data stage until all data is sent:

2..n-

3

Client to

Server

0x0401 – File Data Packet ID 5.1.13.2.3 file_packet_data_type

3..n-

2

Server to

Client

0x0404 – Packet Receipt Packet ID 5.1.13.2.4 packet_receipt_data_type

 …all file data was sent, so end the file transfer sequence as shown below:

n-1 Client to

Server

0x0402 – File Transfer End Packet ID 5.1.13.2.5 file_end_data_type

n Server to

Client

0x0405 – File End Receipt Packet ID 5.1.13.2.6 file_receipt_data_type

Need help? Email FleetSupport@garmin.com Page 54 001-00096-00 Rev. S

NOTE: Each of the packets in the table above will be discussed below. Go to the desired section by clicking on the

Hyperlink.

5.1.13.2.1 Client to Server - Packet ID: 0x0400 - File Transfer Start

This File Transfer Start step initiates a file transfer from the Client to Server. The data needed to perform this step

is shown in the type definition file_info_data_type below, and should be sent to the Server.

Note: Currently, only the D610-AOBRD Event Log file of FMI Hours of Service (HOS), D612-Custom Forms

Submit, and D616-IFTA Files can be transferred from the Client to the Server.

typedef struct

 {

 uint32 file_size;

 uint8 file_version_length;

 uint8 file_type; /* 1 = AOBRD Event, 2 = Custom Form submit */

 uint8 reserved[2]; /* Set to 0 */

 uint8 file_version[16]; /* 16 byte constant length */

 } file_info_data_type;

The file_size is the size of the file that will be transferred, in bytes. The maximum file size is limited by the amount

of available space on the device. The file_version contains up to 16 bytes of arbitrary data to be associated with the

file being transmitted, as a version number or for other purposes. The file_version_length indicates the number of

bytes of file_version that are valid. The file_type should be set to indicate the file type.

Go to packet sequence table, click here> 5.1.13.2

5.1.13.2.2 Server to Client - Packet ID: 0x0403 - File Start Receipt

Once the Server correctly receives the File Transfer Start packet from the previous step, the Server responds back to

the Client with a receipt packet. The receipt data type definition file_receipt_data_type shown below is created by

the Server, and sent back to the Client. Note, the file_type from the File Transfer Start data is also included in the

response.

typedef struct

 {

 uint8 result_code;

 uint8 file_type; /* 1 = AOBRD Event, 2 = Custom Form submit, 4 = IFTA Files */

 uint8 reserved[2]; /* Set to 0 */

 } file_receipt_data_type;

The file_type will be identical to the value received in the File Transfer Start Packet ID. The result_code indicates

whether the operation was successful. Result codes and their meanings are described in the table below. At

minimum, the Client must differentiate between a result code of zero, indicating success, and a nonzero result code,

indicating failure.

Result Code

(Decimal)

Meaning Recommended Response

0 Success None

All other Error Abort the file transfer.

Go to packet sequence table, click here> 5.1.13.2

Need help? Email FleetSupport@garmin.com Page 55 001-00096-00 Rev. S

5.1.13.2.3 Client to Server - Packet ID: 0x0401 - File Data

After the Client receives the Server’s File Start Receipt packet indicating no errors, the Client sends a File Data

packet to the Server. This packet type contains the actual file data. The type definition for the

file_packet_data_type is shown below.

Note: Currently, only the D610-AOBRD Event Log file of FMI Hours of Service (HOS), D612-Custom Forms

Submit, and D616-IFTA Files can be transferred from the Client to the Server.

Note: The file_data is limited to 245 bytes. Files containing data larger than 245 bytes will require multiple

file data packets to be sent.

typedef struct

 {

 uint32 offset; /* offset of this data from the beginning of the file */

 uint8 data_length; /* length of file_data (0..245) */

 uint8 file_type; /* 1 = AOBRD Event, 2 = Custom Form submit, 4 = IFTA Files */

 uint8 reserved[2]; /* Set to 0 */

 uint8 file_data[245 max]; /* File data, 245 bytes maximum per packet, file_data[] greater */

 /* than 245 bytes will require additional packets to be sent */

 } file_packet_data_type;

The offset indicates the position that should be written in the file, the first byte of the file has offset zero. The

data_length indicates the number of bytes of file data that are being transmitted in this packet. The file_type will be

identical to the value received in the File Transfer Start Packet ID. The file_data is the actual data to be written to

the file.

Note: The Client must send file packets in ascending order by offset. The Client may vary data_length from

packet to packet to suit the needs of the application.

Go to packet sequence table, click here> 5.1.13.2

5.1.13.2.4 Server to Client - Packet ID: 0x0404 - Packet Receipt

The Server responds to File Data packets sent from the Client with a Data Packet Receipt packet. The type

definition for the packet_receipt_data_type is shown below.

typedef struct

 {

 uint32 offset; /* offset of data received */

 uint32 next_offset; /* offset of next data the Server should send */

 } packet_receipt_data_type;

The offset is the offset of the file packet received, which is the same as the offset of the corresponding

file_packet_data_type that contained the file data from the Client. The next_offset indicates the offset that the

Client should use when sending the next chunk of file data. The offset and the next_offset are to be interpreted as

follows:

• Normally, the next_offset will be equal to the sum of the offset and the data_length from the corresponding

file_packet_data_type.

• If the next_offset is equal to the size of the file, all file data has been received.

• If the next_offset is less than the offset, the Server has rejected the file data, as the data beginning at

next_offset has not yet been received.

• If the next_offset is equal to offset, a temporary error has occurred; the Client should resend the data packet.

• If the next_offset is equal to 0xFFFFFFFF hexadecimal (4294967295 decimal) a severe error has occurred;

the transfer should be aborted.

Need help? Email FleetSupport@garmin.com Page 56 001-00096-00 Rev. S

These rules enable a simple mechanism for event-driven file transfer, when the Client receives the

packet_receipt_data_type, it should send the file data beginning at next_offset, unless an error has occurred or the

entire file has been sent. If this approach is taken, the Client should also check the offset received against the offset

sent; if they do not match, the receipt packet should be ignored, as it indicates a delayed receipt after the Client

retransmitted a packet.

Go to packet sequence table, click here> 5.1.13.2

5.1.13.2.5 Client to Server - Packet ID: 0x0402 - File Transfer End

The File Transfer End packet is sent by the Client when all of the file data has been successfully sent to the Server.

This packet contains the file CRC value for the complete file that was sent by the Client, and the Server will now

verify the CRC value against the received file.

typedef struct

 {

 uint32 crc; /* CRC of entire file as computed by UTL_calc_crc32 */

 } file_end_data_type;

The crc is the CRC32 checksum of the entire file. The CRC32 algorithm is included in an Appendix (Section 6.5)

and in electronic form in the Fleet Management Interface Developer Kit.

Go to packet sequence table, click here> 5.1.13.2

5.1.13.2.6 Server to Client - Packet ID: 0x0405 - File End Receipt

The File End Receipt packet is sent by the Server to the Client following the reception of File Transfer End packet

from the Client. Any result_code other than ‘0’ will invoke the Client to re-send the file to the Server. The format

of the Server to Client File End Receipt is shown below:

typedef struct

 {
 uint8 result_code; /* 0 = No transfer errors, non-zero shows error */
 uint8 file_type; /* 1 = AOBRD Event, 2 = Custom Form submit, 4 = IFTA Files */
 uint8 reserved[2]; /* Set to 0 */
 } file_receipt_data_type;

Go to packet sequence table, click here> 5.1.13.2

5.1.13.3 File Information Protocol

This protocol allows the Server to retrieve information about files on the Client. Currently, only GPI files will

provide information using this protocol.

5.1.13.3.1 GPI File Information

This protocol allows the Server to determine the size and version of the current Fleet Management GPI file on the

device. The information returned will be for the last Fleet Management GPI file that was successfully transferred to

the Client.

This protocol is only supported on Clients that report A604 as part of their protocol support data. The packet

sequence for the GPI File Transfer Protocol is shown below:

Need help? Email FleetSupport@garmin.com Page 57 001-00096-00 Rev. S

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0406 – GPI File Information Request Packet ID None

1 Client to Server 0x0407 – GPI File Information Packet ID file_info_data_type

This data type is only supported on Clients that report D604 as part of their protocol support data.

typedef struct /* D604 */

 {

 uint32 file_size;

 uint8 file_version_length;

 uint8 file_type; /* Set to 0 for GPI files */

 uint8 reserved[2]; /* Set to 0 */

 uint8 file_version[16]; /* 16 byte constant length */

 } file_info_data_type;

The file_size is the size of the file currently in use on the device. If no file exists on the device, the file_size is zero.

The file_version contains up to 16 bytes of version information sent by the Server during the GPI File Transfer

Protocol. The file_version_length indicates the number of bytes of file_version that are valid. If no file exists on the

device, or the file was not transferred via the Fleet Management Interface, the file_version_length will be zero.

5.1.14 Data Deletion Protocol

This protocol is used by the Server to delete data on the Client. This protocol is only supported on Clients that

report A603 as part of their protocol support data. The packet sequence for the Data Deletion protocol is shown

below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0230 – Data Deletion Packet ID data_deletion_data_type

The type definition for the data_deletion_data_type is shown below.

typedef struct /* D603 */

 {

 uint32 data_type;

 } data_deletion_data_type;

The value for the data_type corresponds to the type of data to be manipulated on the Client. The table below defines

the values for data_type, along with the protocol support data required for the value.

Value

(Decimal)

Meaning Support

0 Delete all stops on the Client D603

1 Delete all messages on the Client D603

2 Delete the active navigation route on the Client. D604

3 Delete all canned messages on the Client. D604

4 Delete all canned replies on the Client.

(All Server to Client Canned Response Text messages that have not been replied will

become A604 Open text messages.)

D604

5 Delete the Fleet Management GPI file on the Client. D604

6 Delete all driver ID and status information on the Client. D604

7 Delete the fleet management interface on the Client (this will delete all data

relating to Fleet Management on the Client).

D604

8 Delete all waypoints created through the Create Waypoint Protocol on the Client. D607

9 Reserved

10 Delete all Custom Forms on the Client D612

11 Delete all Custom Avoidances on the Client D613

12 Delete all Sensor Displays and Sensor Configurations D617

Need help? Email FleetSupport@garmin.com Page 58 001-00096-00 Rev. S

5.1.15 User Interface Text Protocol

This protocol is used to customize the text of certain Fleet Management user interface elements. Currently, only the

“Dispatch” text on the device main menu can be changed.

This protocol is only supported on Clients that report A604 as part of their protocol support data. The packet

sequence for the User Interface Customization Protocol is shown below.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0240 – User Interface Text Packet ID user_interface_text_data_type

1 Client to Server 0x0241 – User Interface Text Receipt Packet ID user_interface_text_receipt_data_type

The type definition for the user_interface_text_data_type is shown below.

typedef struct /* D604 */

 {

 uint32 text_element_id;

 uchar_t8 new_text[]; /* variable length, null terminated, 50 bytes max */

 } user_interface_text_data_type;

The supported text_element_ids and their meanings are described in the table below. The new_text is the

replacement text for that user interface element.

Element ID (decimal) Meaning

0 “Dispatch” text on Client main menu

typedef struct /* D604 */

 {

 uint32 text_element_id;

 boolean result_code;

 uint8 reserved[3]; /* Set to 0 */

 } user_interface_text_receipt_data_type;

The text_element_id will be the same as that of the corresponding user_interface_text_data_type. The result_code

indicates whether the text was updated successfully. It will be false if the text_element_id is not supported, or if the

new_text is a null string.

5.1.16 Ping (Communication Link Status) Protocol

This protocol is used to send a “ping” to determine whether the communication link is still active.

This protocol is only supported on Clients that report A604 as part of their protocol support data. Client to Server

pings are throttled by default on Clients that report A605 as part of their protocol support data. See the Message

Throttling Protocols (Section 5.1.17) to enable the Ping protocol on these Clients.

The packet sequences for the Ping Protocol are shown below.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x0260 – Ping Packet ID None

1 Server to Client 0x0261 – Ping Response Packet ID None

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0260 – Ping Packet ID None

1 Client to Server 0x0261 – Ping Response Packet ID None

Need help? Email FleetSupport@garmin.com Page 59 001-00096-00 Rev. S

5.1.17 Message Throttling Protocols

The Message Throttling protocols allow the Server to enable or disable certain Fleet Management protocols that are

normally initiated by the Client, and determine which protocols are enabled and disabled. When a protocol is

disabled, the Client will not initiate the protocol. However, user interface elements related to that protocol remain

enabled. For example, if the Client to Server Open Text Message protocol is disabled, the user may still create a

new text message, but the message will not actually be sent until the protocol is enabled again.

Note: Position, Velocity, and Time (PVT) packets (packet ID 51 decimal), are enabled and disabled using the PVT

protocol. See Section 5.2.4 for more information.

5.1.17.1 Message Throttling Control Protocol

This protocol is used to enable or disable certain Fleet Management protocols that would normally be initiated by

the Client.

The Message Throttling Control Protocol is only supported on Clients that report A604 as part of their protocol

support data. The packet sequence for the Message Throttling Protocol is shown below.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0250 – Message Throttling Command Packet ID message_throttling_data_type

1 Client to Server 0x0251 – Message Throttling Response Packet ID message_throttling_data_type

The type definition for the message_throttling_data_type is described below.

typedef struct /* D604 */

 {

 uint16 packet_id;

 uint16 new_state;

 } message_throttling_data_type;

The packet_id identifies the first Fleet Management Packet ID in the packet sequence. Protocols that can be

throttled, along with the corresponding packet ID, are listed in the table below. Clients that report A605 as part of

their protocol support data will have certain protocols throttled by default, as listed below. Clients that report A604

but not A605 will have all protocols enabled by default.

Fleet Management Protocol Packet ID

(Hexadecimal)

Default State

(A605)

Support

Message Status 0x0041 Enabled D605

Refresh Canned Response Text 0x0034 Disabled D605

Refresh Canned Message List 0x0054 Disabled D605

Client to Server Open Text Message 0x0024 Enabled D605

Stop Status 0x0211 Enabled D605

Estimated Time of Arrival (ETA) 0x0201 Enabled D605

Driver ID Update 0x0811 Enabled D605

Driver Status List Refresh 0x0804 Disabled D605

Driver Status Update 0x0821 Enabled D605

Ping (Communication Link Status) 0x0260 Disabled D605

Waypoint Deleted 0x0133 Disabled D607

On the command packet, the new_state is one of the values from the table below. On the response packet, the

new_state is a status which indicates whether the protocol is disabled or enabled after the command is processed.

Need help? Email FleetSupport@garmin.com Page 60 001-00096-00 Rev. S

New State (Decimal) Meaning

0 Disable the specified protocol.

1 Enable the specified protocol.

5.1.17.2 Message Throttling Query Protocol

The Message Throttling Query Protocol is used to obtain the throttling state of all protocols that may be throttled.

The Message Throttling Query Protocol is only supported on Clients that report A605 as part of their protocol

support data. The packet sequence for the Message Throttling Protocol is shown below.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0252 – Message Throttling Query Packet ID none

1 Client to Server 0x0253 – Message Throttling Query Response

Packet ID

message_throttling_list_data_type

The type definition for the message_throttling_list_data_type is described below.

typedef struct /* D605 */

 {

 uint16 response_count;

 message_throttling_data_type response_list[]; /* one element for each protocol in the table

 above, 60 max */

 } message_throttling_list_data_type;

The response_count is the number of elements in the response_list array. The response_list array contains one

message_throttling_data_type element for each protocol that can be throttled, with new_state set to the current

throttle status of the protocol. The Server should not expect response_list to be in any particular order.

5.1.18 FMI Safe Mode Protocol

The FMI Safe Mode Protocol is used to enable FMI Safe Mode (henceforth FMISM) and to set the threshold speed

at which it will be enforced. Once the FMISM is turned on, it overrides the normal consumer safe mode and hides

the “Safe Mode” setting. When the FMISM is turned off, the usual consumer safe mode setting becomes effective.

The following restrictions go into effect when the threshold speed is exceeded:

• The driver will be restricted from going to ‘Dispatch’ and ‘Tools’ menus

• If the driver is browsing a page descending from the ‘Dispatch’ or ‘Tools’ menus, the driver will be taken

to the main map page

• The driver will not be able to read new stops or non-immediate text messages

The FMISM protocol is only supported on Clients that report A606 as part of their protocol support data. The

packet sequence for the FMISM Protocol is shown below.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0900 –FMI Safe Mode Packet ID fmi_safe_mode_data_type

1 Client to Server 0x0901 –FMI Safe Mode Response Packet ID fmi_safe_mode_receipt_data_type

The type definition for the fmi_safe_mode_data_type is shown below.

typedef struct /* D606 */

 {

 float32 speed; /* in meters per second */

 } fmi_safe_mode_data_type;

To turn on the FMISM, set the speed to a positive decimal number in meters per second. The range of the speed is 0

to 5MPH(2.2352 m/s). If the set speed is greater than 5MPH, then the threshold speed will be set to 5MPH. To turn

Need help? Email FleetSupport@garmin.com Page 61 001-00096-00 Rev. S

off the FMISM protocol, set a negative speed. The table below shows the effects of setting speed in different

ranges.

Speed MPH(m/s) Effect

Less than 0 Turn off FMI Safe Mode

Between 0 and 5(2.2352) Turn on FMI Safe Mode

Greater than 5(2.2352) Turn on FMI Safe Mode. Speed is set to 5(2.2352)

The type definition for the fmi_safe_mode_receipt_data_type is shown below.

typedef struct /* D606 */

 {

 boolean result_code;

 uint8 reserved[3]; /* Set to 0 */

 } fmi_safe_mode_receipt_data_type;

The result_code indicates whether the operation took effect on the Client device; it will be true if the FMISM

operation is successful or false if an error occurred.

5.1.19 Speed Limit Alert Protocols

The Speed Limit Alert protocol (henceforth SLA) is used to alert the Server of speed limit violations. Once enabled,

the device will begin monitoring vehicle speed, speed limits and send alerts during speeding events. If the device

database does not contain the speed limit, it will behave as if the speed limit is arbitrarily large. Some PNDs allow

the user to update a posted speed limit. In that case, only the original speed limits will be used by SLA.

The SLA protocol is only supported on Clients that report A608 as part of their protocol support data.

5.1.19.1 Speed Limit Alert Setup Protocol

SLA is off by default, awaiting a setup packet from the host. SLA settings are saved across power cycles. The

packet sequence to setup A608 SLA is shown below.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1000 – Speed Limit Alert Setup setup_data_type

1 Client to Server 0x1001 – Speed Limit Alert Setup Receipt setup_receipt_data_type

The type definition for the setup_data_type is shown below.

typedef struct /* D608 */

 {

 uint8 mode;

 uint8 time_over;

 uint8 time_under;

 uint8 alert_user;

 float32 threshold;

 } setup_data_type;

Mode is used to enable or disable SLA. Car and truck speed limits can be different, therefore an option to specify

either one is provided. The table below shows all allowed values for mode.

Mode Meaning

0 Car

1 Off

2 Truck

Time_over is the time in seconds since threshold is exceeded after which speeding event starts. Time_under is the

time in seconds since speed in decreased below the threshold after which speeding event ends. Alert_user denotes

Need help? Email FleetSupport@garmin.com Page 62 001-00096-00 Rev. S

whether the driver is to be notified with an audible tone when the speeding event starts. Threshold is the speed in

meters per second above (positive) or below (negative) speed limit after which the driver is considered speeding.

Note: Negative threshold use is recommended for testing purposes only.

The type definition for the setup_receipt_data_type is shown below.

typedef struct /* D608 */

 {

 uint8 result_code;

 uint8 reserved[3]; /* Set to 0 */

 } setup_receipt_data_type;

Result_code contains the result. The table below shows all possible values for result_code.

result_code Meaning

0 Success

1 Error

2 Unsupported mode

5.1.19.2 Speed Limit Alert Protocol

A speeding event starts when the speed threshold is exceeded for time_over seconds, and ends when speed drops

below threshold for time_under seconds. The packet sequence for SLA alerts is shown below.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x1002 – Speed Limit Alert alert_data_type

1 Server to Client 0x1003 – Speed Limit Alert Receipt alert_receipt_data_type

The type definition for the alert_data_type is shown below.

typedef struct /* D608 */

 {

 uint8 category;

 uint8 reserved[3]; /* set to 0 */

 sc_position_type position;

 time_type timestamp;

 float32 speed; /* meters per second */

 float32 speed_limit; /* meters per second */

 float32 max_speed; /* meters per second */

 } alert_data_type;

If SLA is turned off, or any of the settings are changed during a speeding event, an alert of ‘Invalid’ category will be

sent. For alerts of ‘Error’ and ‘Invalid’ categories, only the category value is significant, and all alerts since last

‘Begin’, should be deemed invalid. The table below shows all of the possible values for category.

Category Meaning

0 Begin – Speeding event began

1 Change – Speed limit changed

2 End – Speeding event ended

3 Error – Internal error

4 Invalid – Invalidate speeding event

Position is a semicircle position at the time of the alert. Timestamp is the time at the time of the alert. Speed is the

speed in Meters per Second at the time of the alert. Speed_limit is the speed limit in Meters per Second at the time

Need help? Email FleetSupport@garmin.com Page 63 001-00096-00 Rev. S

of the alert. An arbitrarily large, i.e. 2,000 Meters per Second value indicates there is currently no speed limit in the

device database. Max_speed is the maximum speed in Meters per Second achieved since the last alert. In the case

of an alert of ‘Begin’ category, max_speed is the maximum speed achieved since the threshold was broken.

After receiving an alert packet, the host needs to respond with a receipt packet. The timestamp must be the same as

the alert being confirmed. In case no receipt packet is received, up to 50 alerts will be queued. When the 51st alert

happens, it will be discarded and SLA will be reset to ready state. If reset happens during a speeding event, then all

of the alerts for the current speeding event will be removed from the queue. If this results in clearing of the whole

queue then an alert of type ‘invalid’ is added to the queue.

The type definition for the alert_receipt_data_type is shown below.

typedef struct /* D608 */

 {

 time_type timestamp;

 } alert_receipt_data_type;

5.1.20 A609 Remote Reboot

This protocol allows the Server to request a Client side Remote Reboot, which should only be performed if the

Client device is no longer responding to a user. The execution of this request could potentially lose Client data and

should be used as a last option to regain use of a Client. The Server will request a Remote Reboot using the packet

below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1010 – Remote Reboot Request None

5.1.21 Custom Form Protocols

The Custom Forms protocols allow the Server to send Server-defined form templates to the device and to reorder

and delete those templates. The form templates are used to create forms that can be completed and submitted back

to the Server. The Client will not return default data back to the Server when a driver submits a Custom

Form. A maximum of 30 Custom Form Templates are allowed on a Client device. The Garmin Fleet

Management Development kit contains the following Custom Form Template examples, which can be sent to the

Client:

1. Example_Customer_Trip_Template.xml

2. Example_Truck_Inspection_Template.xml

3. Example_Send_Picture_Template.xml

5.1.21.1 A612 and A621 Custom Form file format

Custom Form files consist of XML data, and follow a specific format as described in the Garmin Custom Form

XML Schema Definition (XSD). A copy of the Garmin XSD can be found in the Garmin Fleet Management

Development kit: http://developer.garmin.com/fleet-management/

Note: When using the date-type field, the Server must include either all of the year, month, and day, or none of them.

Custom Form XML files can potentially be very large, so the GZIP file compression method was implemented for

all Custom Form file transfers (from the Server, and to the Server) to optimize file transmission/reception. The

Server has the option to send non-compressed XML files or GZIP compressed XML files (in the GZIP file

compression format), the Client will accept either format.

http://developer.garmin.com/fleet-management/

Need help? Email FleetSupport@garmin.com Page 64 001-00096-00 Rev. S

NOTE: Custom Form XML files can be transferred in the compressed GZIP file format or in the non-

compressed format.

5.1.21.2 A612 Custom Form Template send to Client Protocol

This protocol allows the Server to send a Custom Form Template to the Client. The same file transfer mechanism is

utilized for Custom Forms as used by GPI and AOBRD driver log downloads to the Client. A Custom Form

Template can be sent to the Client any time that no other files are being sent to the Client.

Note: A maximum of 30 Custom Form Templates are allowed on a Client device.

This process is described in the File Transfer protocol section, click here> 5.1.13.1

5.1.21.2.1 Custom Form Template transfer errors

Any error detected during a download will halt the Custom Form Template file transfer process, and that form will

not be saved by the Client. Once the template is downloaded to the Client, the form will be analyzed for format

errors. Two distinct levels of result codes will be sent back to the Server (one code to indicate the success of the

file download process and one code to indicate the file format/content examination results) in the File End

Receipt Packet of Section 5.1.13.1.6.35.1.13.1.6.5.1.13.1

5.1.21.3 A612 Custom Form submit to Server Protocol

This protocol allows the Client to submit a driver completed Custom Form to the Server using a generic File

Transfer mechanism also utilized by the D610 AOBRD protocol. This protocol is invoked when the driver presses

the “Submit” user interface button. If the Server is not available, the Client will continue to attempt file

transmission until the Custom Form is successfully sent.

Go to Client to Server File Transfer described in the File Transfer protocol section, click here> 5.1.13.2

5.1.21.4 A612 Custom Form Template delete on Client Protocol

The Custom Form Template delete request protocol allows the Server to delete a Custom Form Template on the

Client device. The Server indicates which Custom Form Template to delete by setting the form_id in the

custom_form_delete_to_client_type structure sent to the Client.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1200 – Delete Form Request Packet ID custom_form_delete_to_client_type

1 Client to Server 0x1201 – Delete Form Receipt Packet ID custom_form_delete_to_server_type

typedef struct /* D612 */

 {
 uint32 form_id; /* Form Template ID to delete on client */
 } custom_form_delete_to_client_type;

Client to Server packet receipt contains a template delete receipt packet that includes the form_id and a return_code

to indicate the success of the request using the custom_form_delete_to_server_type structure shown below.

Result

Code

(Decimal)

Meaning Recommended Response

0 Success, Custom Form Template deleted None

All other Internal Client error during Server request The Server should try again later.

Need help? Email FleetSupport@garmin.com Page 65 001-00096-00 Rev. S

typedef struct /* D612 */

 {
 uint32 form_id; /* Form Template ID to delete on client */
 uint8 return_code; /* 0 = Form Template deleted, non-zero indicates error */
 } custom_form_delete_to_server_type;

5.1.21.5 A612 Custom Form Template move position on Client Protocol

The Custom Form Template move position request protocol allows the Server to alter the current position of a

Custom Form Template as it is listed on the Client device. If the requested position is currently occupied by another

Template then the Form Template will be inserted into the list at the position specified by the Server, and could

affect the position of other Template Forms due to an insertion into an existing Template list.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1202 – Move Position Request Packet ID move_form_position_request_to_client_type

1 Client to Server 0x1203 – Move Position Receipt Packet ID form_position_receipt_to_server_type

Server to Client packet contains the move_form_position_request_to_client_type to move a template position.

typedef struct /* D612 */

 {

 uint32 form_id; /* Form Template ID to reposition on client */

 uint32 move_to_position; /* New list position on client */

 } move_form_position_request_to_client_type;

Client to Server packet response contains form_id, current_position and a return_code to indicate the success of the

request shown below. The form_position_receipt_to_server_type receipt structure is also used for the Custom Form

Template position request protocol described in this document.

typedef struct /* D612 */

 {
 uint32 form_id; /* Form Template ID to move on client */
 uint8 current_position; /* Current list position on client */
 uint8 return_code; /* 0 = Form Template repositioned, non-zero indicates error */

 } form_position_receipt_to_server_type;

Return

Code

(Decimal)

Meaning Recommended Response

0 Success None

16 Form Template ID not found The Server should send an ID that exists on Client

All other Internal Client error during Server request The Server should try again later.

5.1.21.6 A612 Custom Form Template position request on Client Protocol

The Custom Form Template position request protocol allows the Server to find the current position of a Custom

Form Template as it is listed on the Client device.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1204 – Form Position Request Packet ID custom_form_position_request_to_client_type

1 Client to Server 0x1205 – Form Position Receipt Packet ID form_position_receipt_to_server_type

Server to Client packet contains the request custom_form_position_request_to_client_type, which includes the

form_id of a particular Custom Form (as shown below).

typedef struct /* D612 */

 {

Need help? Email FleetSupport@garmin.com Page 66 001-00096-00 Rev. S

 uint32 form_id; /* Form Template ID position on client */
 } custom_form_position_request_to_client_type;

Client to Server receipt position receipt packet includes the form_id, the current_position and a return_code to

indicate the success of the request (as shown below). The form_position_receipt_to_server_type receipt structure is

also used for the Custom Form move position request protocol described in this document.

typedef struct /* D612 */

 {
 uint32 form_id; /* Form Template ID for position on client */
 uint8 current_position; /* Position of Form Template on client */
 uint8 return_code; /* 0 = Template position reported, non-zero indicates error */
 } form_position_receipt_to_server_type;

Result

Code

(Decimal)

Meaning Recommended Response

0 Success None

16 Form Template ID not found The Server should send an ID that exists on Client

All other Internal Client error during Server request The Server should try again later.

5.1.21.7 A621 Custom Form Template show request on Client Protocol

The Custom Form Template show request protocol allows the Server to display a Custom Form Template

immediately if it is already on the Client device.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1206 – Form Show Request Packet ID custom_form_show_request_to_client_type

1 Client to Server 0x1207 – Form Show Receipt Packet ID form_show_receipt_to_server_type

Server to Client packet contains the request custom_form_show_request_to_client_type, which includes the

form_id of a particular Custom Form (as shown below).

typedef struct /* D621 */

 {
 uint32 form_id; /* Form Template ID on client */
 } custom_form_show_request_to_client_type;

Client to Server show receipt packet includes the form_id, and a return_code to indicate the success of the request

(as shown below). The form_show_receipt_to_server_type receipt structure is also used for the Custom Form delete

request protocol described in this document.

typedef struct /* D621 */

 {
 uint32 form_id; /* Form Template ID on client */
 uint8 return_code; /* 0 = Template displayed, non-zero indicates error */
 } form_show_receipt_to_server_type;

Result

Code

(Decimal)

Meaning Recommended Response

0 Success None

16 Form Template ID not found The Server should send an ID that exists on Client

All other Internal Client error during Server request The Server should try again later.

Need help? Email FleetSupport@garmin.com Page 67 001-00096-00 Rev. S

5.1.21.8 A621 Custom Form containing a Picture

The A621 protocol allows the driver to include a picture in a Custom Form destined to the Server.

Note: See the Fleet Management Controller (FMC) to examine the example Custom Form Template containing a

picture, named Example_Send_Picture_Template.xml.

Requirements:

1. The PND must be equipped with a camera.

2. The Server must include a picture type element in the Custom Form Template.

3. The maximum number of pictures allowed in a Custom Form Template is restricted to one picture. A

Custom Form Template error message will be returned to the Server if the maximum picture element count

is exceeded in the Template.

4. The driver must select a picture to include in a Custom Form destined to the Server.

5.1.22 Custom Avoidance Protocols

The A613 Custom Avoidance Protocols are used to allow the Server to define areas that Garmin navigation should

avoid when creating routes for the driver. These areas can be create, modified and deleted as well as being enabled

or disabled by the Server.

5.1.22.1 A613 Custom Avoidance Area Feature Enable Protocol

This protocol allows the server to enable or disable the Custom Avoidance Area Feature.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to

Client

0x1236 – Custom Avoidance Area Feature

Packet ID

custom_avoid_feature_enable_type

1 Client to

Server

0x1237 – Custom Avoidance Area Feature

Receipt Packet ID

custom_avoid_feature_enable_type

Server to Client packet enables/disables the Custom Avoidance protocol by sending the type definition for the

custom_avoid_feature_enable_type as shown below:

typedef struct /* D613 */
 {

 time_type origination_time; /* Time sent from Server */
 boolean enable; /* 0 = Disable, 1 = Enable Custom Avoidance feature */
 } custom_avoid_feature_enable_type;

Client to Server receipt packet indicates the success of enabling/disabling the Custom Avoidance Feature by

returning the custom_avoid_feature_enable_type back to the Server as shown above.

Need help? Email FleetSupport@garmin.com Page 68 001-00096-00 Rev. S

5.1.22.2 A613 Custom Avoidance New/Modify Protocol

This protocol allows the server to create or modify a custom avoidance on the client when the “Custom Avoidance

Feature” is enabled (see the “Custom Avoidance Area Feature Enable protocol” in Section 5.1.22.1).

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1230 –Custom Avoidance Create Packet ID custom_avoid_type

1 Client to Server 0x1231 – Custom Avoidance Create Receipt

Packet ID

custom_avoid_rcpt_type

Server to Client packet creates or modifies an existing Custom Avoidance area by sending the custom_avoid_type

structure to the Client. The type definition for the custom_avoid_type is shown below:

typedef struct /* D613 */

 {

 sc_position_type point1; /* Coordinates for Northeast corner */
 sc_position_type point2; /* Coordinates for Southwest corner */
 uint16 unique_id; /* Server-assigned unique ID for the avoidance */
 boolean enable; /* 0 = disable, 1 = enable the custom avoidance */
 uint8 reserved; /* Set to 0 */
 uchar_t8 name[]; /* variable length, null-terminated string, 49 bytes max */

 } custom_avoid_type;

Client to Server receipt packet indicates the success of creating or modifying a Custom Avoidance. The type

definition for the custom_avoid_rcpt_type is shown below:

typedef struct /* D613 */

 {

 uint16 unique_id; /* Server-assigned unique ID */
 uint8 result_code; /* 0 = success, non-zero indicates error (see below) */
 } custom_avoid_rcpt_type;

The expected values for result_code are listed below:

Value (Decimal) Result Code

0 Avoidance Area was added

1 Could not found unique Id.

2 Avoidance List database full

3 Could not save to database

4 Avoidance Name currently in-use

5 Custom Avoidance feature is not enable

5.1.22.3 A613 Custom Avoidance Delete Protocol

This protocol allows the server to delete a custom avoidance on the client.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1232 –Custom Avoidance Delete Packet ID custom_avoid_delete_type

1 Client to Server 0x1233 – Custom Avoidance Deleted Packet ID custom_avoid_deleted_type

Need help? Email FleetSupport@garmin.com Page 69 001-00096-00 Rev. S

Server to Client packet deletes an existing Custom Avoidance area by sending the custom_avoid_delete_type

structure to the Client (as shown below):

typedef struct /* D613 */
 {
 uint16 unique_id; /* Server-assigned unique ID to be deleted */
 } custom_avoid_delete_type;

Client to Server receipt packet indicates the success of deleting a Custom Avoidance. The type definition for the

custom_avoid_deleted_type is shown below:

typedef struct /* D613 */

 {
 uint16 unique_id; /* Server-assigned unique ID */
 uint8 result_code; /* 0 = Avoidance Area deleted, 1 = Unique ID not found */
 } custom_avoid_deleted_type;

The expected values for result_code are listed below:

Value (Decimal) Result Code

0 Avoidance Area was deleted

1 Unique ID not found

5.1.22.4 A613 Custom Avoidance Enable/Disable Protocol

This protocol allows the server to enable or disable an existing Custom Avoidance on the client.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to

Client

0x1234 –Custom Avoidance Enable/Disable

Packet ID

custom_avoid_enable_type

1 Client to

Server

0x1235 – Custom Avoidance Enabled/Disabled

Packet ID

custom_avoid_enable_rcpt_type

Server to Client packet enables/disables an existing Custom Avoidance area by sending the

custom_avoid_enable_type (as shown below):

typedef struct /* D613 */

 {
 uint16 unique_id; /* Server-assigned unique ID for the custom avoidance to be enabled */

 boolean enable; /* 0 = disable, 1 = enable a custom avoidance *
 } custom_avoid_enable_type;

Client to Server receipt packet indicates the success of enabling/disabling an existing Custom Avoidance. The type

definition for the custom_avoid_enable_rcpt_type is shown below:

typedef struct /* D613 */

 {
 uint16 unique_id; /* Server-assigned unique ID */
 uint8 result_code; /* 0 = Success, non-zero indicates error */
 } custom_avoid_enable_rcpt_type;

Need help? Email FleetSupport@garmin.com Page 70 001-00096-00 Rev. S

5.1.23 A616 Set Baud Rate Protocol

This protocol allows the Server to select a RS232 serial baud rate on the Client. Currently the Client default baud

rate is set to 9,600. After the Client (FMI) is enabled using the existing Enable Fleet Management Protocol, the

Server has the option to modify the Client’s RS232 baud rate at any time.

Note: It is recommended to limit the sending of any other protocols when using the Set Baud Rate Protocol until

a successful re-sync of communication has been established (e.g., no PVT, no Ping packet traffic).

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0011 – Baud Rate Request baud_rate_request_data_type

1 Client to Server 0x0012 – Baud Rate Receipt baud_rate_receipt_data_type

Server to Client Set Baud Rate Protocol packet contains a Change Baud Rate request_type and the desired

baud_rate members (shown below). The Server would then wait for a Client response before the Server switches its

own baud rate.

typedef struct /* D616 */

 {

 uint8 request_type; /* 0 = Change baud rate request, 1 = SYNC request

 uint8 baud_rate; /* 0x06 = 9600, 0x0a = 38400, 0x0c = 57600 */

 } baud_rate_request_data_type;

request_type Meaning

0 Set baud rate

1 Sync with Client (sent after rate change)

baud_rate (Decimal) Meaning

6 9,600 baud rate (default)

10 38,400 baud rate

12 57,600 baud rate

The Client to Server receipt response contains the echoed request data from the Server along with a result_code to

indicate if a request error was detected by the Client using the baud_rate_receipt_data_type packet (shown below).

typedef struct /* D616 */

 {

 uint8 result_code /* result code */

 uint8 request_type; /* 0 = Change baud rate request, 1 = SYNC request

 uint8 baud_rate; /* 0x06 = 9600, 0x0a = 38400, 0x0c = 57600 */

 } baud_rate_receipt_data_type;

result_code Meaning

0 Success

1 Invalid request type

2 Invalid baud rate

3 Baud rate control has been temporarily disabled. Not

supported in the current configuration. Try again later.

All others Internal error, try again later

Note: When the Server receives a success response from the Client for a baud rate change request, the Server

should then switch its own baud rate, and begin sending the “Sync” request_type at the new baud rate.

The Server to Client “Sync” request uses the same baud_rate_request_data_type packet (shown above), but now

the request_type member should contain the “Sync with Client” value (see table above). This “Sync” request type

packet can be sent to the Client at any time to verify communication, but it is required to ALWAYS be sent

after a Server baud rate change to cancel the Client’s “30-second baud switch watchdog timer”.

Need help? Email FleetSupport@garmin.com Page 71 001-00096-00 Rev. S

Note: If the Client switches rate and does not receive the Server “Sync” packet within 30 seconds, the Client will

ALWAYS switch back to the default 9,600 baud rate. This ensures the Server/Client can re-establish

communication if some unexpected switch error occurs by either end.

Client to Server “Sync” receipt baud_rate_receipt_data_type packet (shown above) informs the Server that Client

“Sync” has been established. Following the reception of this Client response, the Server should be able to resume

normal FMI packet exchanges.

Note: If at any time, the Client detects the loss of FMI communication through the serial communication port,

which causes the FMI Connection error icon to appear on the Client’s user interface screen, the Client will

automatically switch back to the 9,600 baud rate.

5.1.24 A617 Alert Popup Protocol

The Alert Pop-up protocol allows the Server to send a pop-up alert to the User Interface on the Client’s device.

Once the pop-up appears on the User Interface, the driver can press anyplace on the User Interface to remove it.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1400 – Alert Pop-up alert_popup_type

1 Client to Server 0x1401 – Alert Pop-up Receipt alert_popup_reciept_type

Server to Client type definition for alert_popup_type is shown below:

typedef struct /* D617 */

 {

 uint16 unique_id; /* unique identifier for the alert popup */

 uint16 icon; /* Icon selected from Garmin pre-loaded icons */

 uint8 timeout; /* 1 to 15 (seconds), values above 15 default to 15, 0 = 2 hours */

 uint8 severity; /* 0 = normal, 1 = medium, 2 = high */

 boolean play_sound; /* Play sound on device, 0 = No, 1 = Yes */

 char alert_text[]; /* variable length, null-terminated string, 110 bytes max */

 } alert_popup_type;

The Alert Pop-up structure contains a unique_id to identify this Alert Pop-up. The icon field selects an existing

Garmin icon (listed in the table below) on the Client’s User Interface. The available icons are:

Value

(Decimal)

Icon Value

(Decimal)

Icon

0 No icon needed 12 Weekly Hours counter

1 Driver Behavior 13 Rest Hours counter

2 Tire Pressure 14 Break Hours counter

3 Temperature 15 Dispatcher Tasks

4 Door Ajar 16 Weight

5 Vehicle Maintenance 17 Information

6 OBD-II Generic Sensor 18 Fuel

7 Generic Sensor 1 19 Available (EU symbol)

8 Generic Sensor 2 20 Driving (EU symbol)

9 Generic Sensor 3 21 Rest (EU symbol)

10 No signal 22 Working (EU symbol)

11 Day Hours counter

The timeout field determines the number of seconds the pop-up will remain on the Client’s User Interface for the

driver. The driver can remove the pop-up by pressing anyplace on the User Interface. The setting range is 1 to

15 (seconds). Any value received above 15 will use a default setting of 15 (seconds).

Note: A Server timeout setting of “0” will cause the pop-up to remain on the User Interface for 2 hours (or

until a driver presses anyplace on the User Interface).

Need help? Email FleetSupport@garmin.com Page 72 001-00096-00 Rev. S

The severity field controls the pop-up color when displayed. The play_sound field determines if a pre-recorded

sound should be played when this packet is received. The alert_text string contains the text displayed on the pop-up.

Client to Server type definition for alert_popup_receipt_type is shown below:

typedef struct /* D617 */

 {

 uint16 unique_id; /* unique identifier from the server request */

 uint8 result_code; /* 0 = success, non-zero indicates error */

 } alert_popup_receipt_type;

The Alert Pop-up contains the unique_id sent from the Server. The result_code table is listed below:

result_code Meaning

0 Success

1 Alert name too long

2 Alert icon range error

3 No Alert name

4 Severity out of range

5 Timeout range error

5.1.25 A617 Sensor Display Protocols

The A617 Sensor Display protocol allows the Server or black-box to send sensor information to the Client device,

which can be displayed to the driver. The Server has the ability to configure, update and delete a sensor. A sensor’s

history containing the last 24 data updates will be maintained on the Client device and available for the driver on

demand via the Client User Interface.

Note: The Server may use this protocol to send and display any other data on the Client’s User Interface (not only

sensor data).

As mentioned above, the Sensor functionality is segregated into three distinct types of operation, and listed below:

• Configure Sensor – Create a sensor display object on the Client’s User Interface

• Update Sensor – New sensor data to be displayed or recorded on the Client User Interface

• Delete Sensor – Remove a configured sensor from the Client’s User Interface

• Sensor Display List Position – Find a sensor’s position in the sensor list

5.1.25.1 A617 Configure Sensor Display Protocol

The Configure Sensor Display Protocol allows a Server to create a new sensor, or modify the configuration of an

existing sensor on the Client’s User Interface.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1402 – Configure Sensor Display sensor_config_display_type

1 Client to Server 0x1403 – Configure Sensor Display Receipt sensor_config_display_receipt_type

Server to Client type definition for sensor_config_display_type is shown below:

typedef struct /* D617 */

 {

 uint32 change_id; /* Unique identifier for this Configure Sensor Display packet */

 uint32 unique_id; /* Unique identifier for this sensor display */

 uint16 icon; /* Icon selected from Garmin preloaded icons (see list below) */

 uint8 display_index; /* Sensor sorting index used to order sensor, 1-based, 0 is invalid */

 uint8 reserved[3]; /* set to 0 */

Need help? Email FleetSupport@garmin.com Page 73 001-00096-00 Rev. S

 char sensor_name[]; /* variable length, null-terminated string, 40 bytes max */

 } sensor_config_display_type;

The Configure Display packet contains a change_id that identifies a unique sensor packet. A unique_id indicates a

particular sensor. When modifying the configuration of an existing sensor, the same unique_id value must always

be used.

The icon field selects an existing Garmin icon on the Client’s User Interface, and listed below:

Value

(Decimal)

Icon Value

(Decimal)

Icon

0 No icon needed 12 Weekly Hours counter

1 Driver Behavior 13 Rest Hours counter

2 Tire Pressure 14 Break Hours counter

3 Temperature 15 Dispatcher Tasks

4 Door Ajar 16 Weight

5 Vehicle Maintenance 17 Information

6 OBD-II Generic Sensor 18 Fuel

7 Generic Sensor 1 19 Available (EU symbol)

8 Generic Sensor 2 20 Driving (EU symbol)

9 Generic Sensor 3 21 Rest (EU symbol)

10 No signal 22 Working (EU symbol)

11 Day Hours counter

The sensor will be displayed in a sensor list for the driver, and the list position of this sensor will be dictated by the

display_index, which allows the Server to control (or adjust the list order of) the sensor when displayed for the

driver. If a display_index value is greater than the current last sensor shown then the sensor will be displayed

directly at the end of the sensor list. Sensors will always be shown packed in one contiguous list (no empty or blank

lines) regardless if display_index value gaps occur between sensors.

The name field is a character string displayed for this sensor.

Once a sensor is successfully configured, the Update Sensor Display or Delete Sensor Display protocols can be used

for that sensor.

Note: A maximum of 16 Sensor Displays can be configured on a Client device.

Client to Server type definition for sensor_config_display_receipt_type is shown below:

typedef struct /* D617 */

 {

 uint32 change_id; /* Unique identifier from the Server request */

 uint8 result_code; /* 0 = Success, Non-zero indicates error */

 uint8 operation_mode; /* 1 = Inserted in table, 2 = Modified existing sensor */

 } sensor_config_display_receipt_type;

The receipt packet contains the same change_id from the Server. The result_code table is listed below.

Result code Meaning

0 Success

1 Sensor name too long

2 Sensor icon range error

3 No Sensor name

4 Severity out of range

5 Status string too long

6 Description too long

7 Too many sensors

8 Sensor ID not found

Need help? Email FleetSupport@garmin.com Page 74 001-00096-00 Rev. S

All others Contact Garmin Support

5.1.25.2 A617 Update Sensor Display Status Protocol

The A617 Update Sensor Display Status protocol receives Server or black-box data, which is used to update the

Sensor User Interface and sensor history for a driver. The received data could have originated or been triggered

from virtually any source (e.g., tire sensor, temperature sensor, trailer door sensor, RFID reader, remote data

source).

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1406 – Update Sensor Display Status update_sensor_display_status_type

1 Client to Server 0x1403 – Update Sensor Display Status Receipt update_sensor_display_status_receipt_type

Server to Client type definition for update_sensor_display_status_type is shown below:

typedef struct /* D617 */

 {

 uint32 change_id; /* Unique identifier for this Update Status Display packet */

 uint32 unique_id; /* Unique identifier of a sensor, used during sensor configure */

 uint8 severity; /* 0 = Normal, 1 = Medium, 2 = High */

 boolean play_sound; /* Trigger sound now, 0 = No, 1 = Yes */

 boolean record_sensor; /* Record to this sensor’s history log, 0 = No, 1 = Yes */

 uint8 reserved[3]; /* Set to 0 */

 char status[80]; /* 80 byte constant length including null terminator */

 char description[]; /* variable length, null-terminated string, 110 bytes max */

 } update_sensor_display_status_type;

The Update Sensor Display Status structure contains a change_id that identifies a unique sensor packet. A

unique_id indicates a particular sensor (and must be the same unique_id value used during sensor configuration).

The severity level controls the sensor’s color when displayed in the sensor list. The play_sound field determines if a

pre-recorded sound should be played when this packet is received.

Client to Server type definition for update_sensor_display_status_receipt_type is shown below:

typedef struct /* D617 */

 {

 uint32 change_id; /* Unique identifier from Server request packet */

 uint8 result_code; /* 0 = Success, Non-zero indicates error, see table below */

 uint8 operation_mode; /* 2 = Update sensor status requested */

 } update_sensor_display_status_receipt_type;

The receipt packet contains the same change_id from the Server. The result_code table is listed below.

The operation_mode indicates a “modify” operation was requested.

Result code Meaning

0 Success

1 Sensor name too long

2 Sensor icon range error

3 No Sensor name

4 Severity out of range

5 Status string too long

6 Description too long

7 Too many sensors

8 Sensor ID not found

All others Contact Garmin Support

Need help? Email FleetSupport@garmin.com Page 75 001-00096-00 Rev. S

5.1.25.3 A617 Delete Sensor Display Protocol

The Delete Sensor Display protocol allows the Server to delete a previously configured sensor display on the Client

device.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1404 – Delete Sensor Display delete_sensor_display_type

1 Client to Server 0x1405 – Delete Sensor Display Receipt delete_sensor_display_receipt_type

Server to Client type definition for delete_sensor_display_type is shown below:

typedef struct /* D617 */

 {

 uint32 change_id; /* Unique identifier for this Delete Sensor packet */

 uint32 unique_id; /* Unique identifier of a sensor, used during sensor configure */

 } delete_sensor_display_type;

The Delete Sensor structure contains a change_id that identifies a unique sensor packet. A unique_id indicates a

particular sensor (and must be the same unique_id value used during sensor configuration).

Client to Server type definition for delete_sensor_display_receipt_type is shown below:

typedef struct /* D617 */

 {

 uint32 change_id; /* Unique identifier used from Server request */

 uint8 result_code; /* 0 = Success, Non-zero indicates error */

 uint8 operation_mode; /* 0 = Delete sensor requested */

 } delete_sensor_display_receipt_type;

The receipt packet contains the same change_id from the Server. The result_code table is listed below.

The operation_mode indicates a “delete” sensor operation was requested.

Result code Meaning

0 Success

8 Sensor ID not found

All others Contact Garmin Support

5.1.25.4 A617 Sensor Display List Position Protocol

The Sensor Display List Position Request protocol allows the Server to request the position of a sensor in the current

sensor list.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1407 – Sensor Display List Position sensor_display_position_type

1 Client to Server 0x1408 – Sensor Display List Position Receipt sensor_display_position_receipt_type

Server to Client type definition for sensor_display_position_type is shown below:

typedef struct /* D617 */

 {

 uint32 change_id; /* Unique identifier for this List Position packet */

 uint32 unique_id; /* Unique identifier of a sensor, used during sensor configure */

 } sensor_display_position_type;

The Sensor List Position Request structure contains a change_id that identifies a unique sensor packet. The

unique_id indicates a particular sensor (and must be the same unique_id value used during sensor configuration).

Client to Server type definition for sensor_display_position_receipt_type is shown below:

Need help? Email FleetSupport@garmin.com Page 76 001-00096-00 Rev. S

typedef struct /* D617 */

 {

 uint32 change_id; /* Unique identifier from the server request */

 uint8 result_code; /* 0 = Success, Non-zero indicates error */

 uint8 display_index; /* Indicates position in sensor list this sensor will appear */

 } sensor_display_position_receipt_type;

The receipt packet contains the same change_id from the Server. The result_code table is listed below. The

display_index indicates the list position a driver would view using the Client’s User Interface sensor list.

Result code Meaning

0 Success

8 Sensor ID not found

5.1.26 A622 FMI Dash Camera Protocols

The FMI Dash Camera Protocols provide Server access and control of PND camera configuration and functionality.

The Server has the option to lock the configuration settings, which prevents drivers from altering the settings.

Optional notification packets can be configured to alert the Server when certain camera detected events occur.

5.1.26.1 A622 Lock Dash Camera Configuration

The Server has the option to lock the dash camera configuration settings, which prevents drivers from altering the

settings. The Client will respond with a receipt packet that contains a result code.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1600 – Lock Dash Camera Settings dashcam_lock_settings_type

1 Client to Server 0x1601 – Lock Dash Camera Settings Receipt dashcam_lock_reciept_type

Server to Client type definition for dashcam_lock_settings_type is shown below:

typedef struct /* D622 */

 {

 date_time_t32 origination_time; /* Time sent from Server */

 boolean lock_change; /* 0=Allow, 1=Not Allow, user to change dashcam settings */

 boolean lock_change_adas; /* 0=Allow, 1=Not Allow, user to change Advanced Driver

 Assistance settings */

 } dashcam_lock_settings_type;

Client to Server type definition for dashcam_lock_reciept_type is shown below:

typedef struct /* D622 */

 {

 uint32 change_id; /* Server assigned time, unique identifier for this message */

 uint8 result_code; /* 0 = success, non-zero indicates error */

 } dashcam_lock_reciept_type;

result_code Meaning

0 Success

1 Lock ADAS feature not supported

All others Contact Garmin Support

Need help? Email FleetSupport@garmin.com Page 77 001-00096-00 Rev. S

5.1.26.2 A622 Set Dash Camera Configuration

The Server has the ability to configure the dash camera settings. All settings are maintained in Non-Volatile

memory. The Client will respond with a receipt packet that contains a result code.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1602 – Set Dash Camera Settings dashcam_config_type

1 Client to Server 0x1603 – Set Dash Camera Settings Receipt dashcam_receipt_type

The settings_count indicate the number of settings in this packet. The settings_list consists of a setting_id and its

value that will be saved in the PND (client).

Server to Client type definition for dashcam_config_type is shown below:

typedef struct /* D622 */

 {

 uint32 change_id; /* Server assigned, unique identifier for this message */

 uint8 settings_count; /* Number of items in settings_list */

 dashcam_list_type settings_list[10]; /* Note: See structure below */

 } dashcam_config_type;

Note, the following structure is contained in the structure above:

typedef struct /* D622 */

 {

 uint8 setting_id; /* See Setting Table below for id values */

 uint8 new_value; /* See Setting Table below for setting values */

 uint8 reserved[2]; /* Set to 0 */

 } dashcam_list_type;

Setting Table

setting_id Setting Type new_value

0 Forward Collision Warning 0 = Off, 1 = On

1 Forward Collision Sensitivity 0 = Low

1 = Medium

2 = High

2 Lane Departure Warning 0 = Off, 1 = On

3 Record video on startup 0 = Off, 1 = On

4 Incident Detection 0 = Off, 1 = On

5 Record Audio 0 = Off, 1 = On

6 Overlay date and time 0 = Off, 1 = On

7 Overlay location and speed 0 = Off, 1 = On

8 Video Resolution 0 = High (1080P)

1 = Medium (720P)

9 Record after power loss 0 = 5 minutes

1 = 3 minutes

2 = 1 minute

3 = 30 seconds

4 = 15 seconds

Client to Server type definition for dashcam_receipt_type is shown below:

typedef struct /* D622 */

 {

 uint32 change_id; /* Server assigned, unique identifier */

 uint8 result_code; /* 0 = success, non-zero indicates error */

 } dashcam_reciept_type;

Need help? Email FleetSupport@garmin.com Page 78 001-00096-00 Rev. S

result_code Meaning

0 Success

2 After power loss, settings out of range

3 Recorder resolution out of range

4 FCWS sensitivity out of range

5 Settings ID out of range

All others Contact Garmin Support

5.1.26.3 A622 Get Dash Camera Configuration

The Server can query the PND for the current dash camera configuration settings. The Client will respond with a

configuration packet that contains the current Non-Volatile settings.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1604 – Get Dash Camera Settings dashcam_get_settings_req_type

1 Client to Server 0x1605 – Get Dash Camera Settings Receipt dashcam_get_config_settings_receipt_type

Server to Client type definition for dashcam_get_settings_req_type is shown below:

typedef struct /* D622 */

 {

 uint32 change_id; /* Server assigned, unique identifier for this message */

 } dashcam_get_settings_req_type;

Client to Server type definition for dashcam_get_config_settings_receipt_type is shown below:

typedef struct /* D622 */

 {

 uint32 change_id; /* Server assigned, unique identifier */

 uint8 result_code; /* 0 = success, non-zero indicates error */

 uint8 settings_count; /* Number of array entries in this settings_list */

 dashcam_list_type settings_list[10]; /* Note: See structure below */

 } dashcam_get_config_settings_receipt_type;

Note: The following structure is contained in the structure above:

typedef struct /* D622 */

 {

 uint8 setting_id; /* See Setting Table below for id values */

 uint8 read_value; /* See Setting Table below for setting values */

 uint8 reserved[2]; /* Set to 0 */

 } dashcam_list_type;

setting_id Setting Type read_value

0 Forward Collision Warning 0 = Off, 1 = On

1 Forward Collision Sensitivity 0 = Low

1 = Medium

2 = High

2 Lane Departure Warning 0 = Off, 1 = On

3 Record video on startup 0 = Off, 1 = On

4 Incident Detection 0 = Off, 1 = On

5 Record Audio 0 = Off, 1 = On

6 Overlay date and time 0 = Off, 1 = On

7 Overlay location and speed 0 = Off, 1 = On

8 Video Resolution 0 = High (1080P)

1 = Medium (720P)

9 Record after power loss 0 = 5 minutes

Need help? Email FleetSupport@garmin.com Page 79 001-00096-00 Rev. S

1 = 3 minutes

2 = 1 minute

3 = 30 seconds

4 = 15 seconds

result_code Meaning

0 Success

All others Contact Garmin Support

5.1.26.4 A622 Set Dash Camera Notification Configuration

The dash camera can provide notifications to the Server when forward collisions, lane departures, or incidents are

detected. Each notification will occur immediately after detection. To enable this functionality, the Server must first

send a notification configuration packet to the PND (client). The Client will respond with a receipt packet that

contains a result code.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1606 – Set Dash Camera Notification Request dashcam_ntfctn_settings_type

1 Client to Server 0x1607 – Set Dash Camera Notification Receipt dashcam_receipt_type

Server to Client type definition for dashcam_ntfctn_settings_type is shown below:

typedef struct /* D622 */

 {

 uint32 change_id; /* Server assigned, unique identifier for this message */

 boolean enable_fwd_collision_ntfctn; /* 0=Off, 1=On, forward collision notifications */

 boolean enable_lane_departure_ntfctn; /* 0=Off, 1=On, lane departure notifications */

 boolean enable_incident_ntfctn; /* 0=Off, 1=On, incident detection notifications */

 uint8 reserved; /* Set to 0 */

 } dashcam_ntfctn_settings_type;

Client to Server type definition for dashcam_receipt_type is shown below:

typedef struct /* D622 */

 {

 uint32 change_id; /* Server assigned, unique identifier */

 uint8 result_code; /* 0 = success, non-zero indicates error */

 } dashcam_reciept_type;

result_code Meaning

0 Success

7 FCW and LDW notification not supported

8 FCW not enabled

9 LDW not enabled

10 Incident not enabled

All others Contact Garmin Support

5.1.26.5 A622 Get Dash Camera Notification Configuration

The Server can query the PND for the current dash camera notification settings. The Client will respond with a

notification settings packet that contains the current Non-Volatile settings.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1608 – Get Dash Camera Notification Request dashcam_get_settings_req_type

1 Client to Server 0x1609 – Get Dash Camera Notification Receipt dashcam_ntfctn_settings_type

Server to Client type definition for dashcam_get_settings_req_type is shown below:

Need help? Email FleetSupport@garmin.com Page 80 001-00096-00 Rev. S

typedef struct /* D622 */

 {

 uint32 change_id; /* Server assigned, unique identifier for this message */

 } dashcam_get_settings_req_type;

Client to Server type definition for dashcam_ntfctn_settings_type is shown below:

typedef struct /* D622 */

 {

 uint32 change_id; /* Server assigned, unique identifier */

 boolean enable_fwd_collision_ntfctn; /* 0=Off, 1=On, forward collision notifications */

 boolean enable_lane_departure_ntfctn; /* 0=Off, 1=On, lane departure notifications */

 boolean enable_incident_ntfctn; /* 0=Off, 1=On, incident detection notifications */

 uint8 result_code; /* 0 = success, non-zero indicates error */

 } dashcam_ntfctn_settings_type;

result_code Meaning

0 Success

All others Contact Garmin Support

5.1.26.6 A622 Dash Camera Warning Notification to Server

The Server will be notified when a Forward Collision, Lane Departure, or Incident configured notification event is

detected. Once the Server receives the notification, the Server must send a notification receipt back to the PND

(client) to acknowledge reception of the packet.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x160a – Dash Camera Notification dashcam_ntfctn_data_type

1 Server to Client 0x160b – Dash Camera Notification Receipt dashcam_ntfctn_receipt_type

Client to Server type definition for dashcam_ntfctn_data_type is shown below:

typedef struct /* D622 */

 {

 uint32 change_id; /* Client assigned, unique identifier for this message */

 sc_position_type location; /* Latitude and Longitude in semicircles */

 uint8 ntfctn_type; /* Notification type, see table below */

 } dashcam_ntfctn_data_type;

Notification Type

ntfctn_type Meaning

0 Incident Warning

1 Forward Collision Warning

2 Lane Departure Warning

Server to Client type definition for dashcam_ntfctn_receipt_type is shown below:

typedef struct /* D622 */

 {

 uint32 change_id; /* Client assigned, unique identifier */

 } dashcam_ntfctn_receipt_type;

Need help? Email FleetSupport@garmin.com Page 81 001-00096-00 Rev. S

5.1.26.7 A622 Dash Camera Incident File Notification for Server

The Server will be notified when an Incident event file is saved by the PND. Once the Server receives the

notification, the Server must send a notification receipt back to the PND (client) to acknowledge reception of the

packet.

A file name will be included in this Server Notification. The Incident file should contain a MP4 format video

showing the Incident.

Note: The video file will not be sent to the Server. Please refer to the Garmin Dash Cam Player for information

regarding viewing and saving recorded videos and photos on your computer.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x160c – Dash Camera Incident File Notification dashcam_incident_file_data_type

1 Server to Client 0x160d – Dash Camera Incident File Notification

Receipt

dashcam_incident_file_receipt_type

Client to Server type definition for dashcam_incident_file_data_type is shown below:

typedef struct /* D622 */

 {

 uint32 change_id; /* Client assigned, unique identifier for this message */

 sc_position_type location; /* Latitude and Longitude in semicircles */

 uint8 ntfctn_type; /* Notification type: 0=Incident Detection */
 incident_fname[]; /* variable length, null-terminated string, 60 bytes max */

 } dashcam_incident_file_data_type;

Server to Client type definition for dashcam_incident_file_receipt_type is shown below:

typedef struct /* D622 */

 {

 uint32 change_id; /* Client assigned, unique identifier */

 } dashcam_incident_file_receipt_type;

5.2 Other Relevant Garmin Protocols

All the protocols described in this section are Garmin protocols that are supported on all Garmin devices that

support fleet management. The protocols are not related to the fleet management, but can prove to be very useful in

having a complete fleet management system design.

5.2.1 Command Protocol

This section describes a simple protocol used in commanding the Client or Server to do something (e.g. send

position data). For a list of command IDs relevant to this document refer to Appendix 6.4. The link layer packet for

the command protocol would be represented as shown below.

Byte Number Byte Description Notes

0 Data Link Escape 16 (decimal)

1 Packet ID 10 (decimal)

2 Size of Packet Data 2

3-4 Command ID See Appendix 6.4

5 Checksum 2's complement of the sum of all bytes from byte 1 to byte 4

6 Data Link Escape 16 (decimal)

7 End of Text 3 (decimal)

Need help? Email FleetSupport@garmin.com Page 82 001-00096-00 Rev. S

5.2.2 Unit ID/ESN Protocol

This protocol is used to extract the Client’s unit ID (or electronic serial number). The packet sequence for this

protocol is shown below.

N Direction Packet/Command ID Packet Data Type

0 Server to Client 14 – Request Unit ID Command ID No data (command)

1 Client to Server 38 – Unit ID Packet ID unit_id_data_type

The type definition for the unit_id_data_type is shown below.

typedef struct

 {

 uint32 unit_id;

 uint32 other_stuff[]; /* variable length */

 } unit_id_data_type;

The unit_id is the first 32-bits of the data type. Some Clients could append additional information used by Garmin

manufacturing. That data should be ignored.

5.2.3 Date and Time Protocol

The Date and Time protocol is used to transfer the current date and time on the Client to the Server. The packet

sequence for this protocol is shown below.

N Direction Packet/Command ID Packet Data Type

0 Server to Client 5 – Request Date/Time Data Command ID No data (command)

1 Client to Server 14 – Date/Time Data Packet ID date_time_data_type

The type definition for the date_time_data_type is shown below.
typedef struct

 {

 struct

 {

 uint8 month; /* month (1-12) */

 uint8 day; /* day (1-31) */

 uint16 year; /* Real year (1990 means 1990!) */

 } date;

 struct

 {

 sint16 hour; /* hour (0-65535), range required for correct ETE conversion */

 uint8 minute; /* minute (0-59) */

 uint8 second; /* second (0-59) */

 } time;

 } date_time_data_type;

Note: The date_time_data_type differs from the time_type used throughout the rest of this document.

5.2.4 Position, Velocity, and Time (PVT) Protocol

The PVT Protocol is used to provide the Server with real-time position, velocity, and time (PVT), which is

transmitted by the Client approximately once per second. The Server can turn PVT on or off by using a Command

Protocol (see Appendix 6.4). ACK and NAK packets are optional for this protocol; however, unlike other protocols,

the Client will not retransmit a PVT packet in response to receiving a NAK from the host. The packet sequence for

the PVT Protocol is shown below:

Need help? Email FleetSupport@garmin.com Page 83 001-00096-00 Rev. S

N Direction Packet/Command ID Packet Data Type

0 Server to Client 49 – Turn On PVT Data Command ID

or

50 – Turn Off PVT Data Command ID

No data (command)

1 Client to Server 51 – PVT Data Packet ID pvt_data_type

The type definition of the pvt_data_type is shown below.

typedef struct

 {

 float32 altitude;

 float32 epe;

 float32 eph;

 float32 epv;

 uint16 type_of_gps_fix;

 float64 time_of_week;

 double_position_type position;

 float32 east_velocity;

 float32 north_velocity;

 float32 up_velocity;

 float32 mean_sea_level_height;

 sint16 leap_seconds;

 uint32 week_number_days;

 } pvt_data_type;

The altitude member provides the altitude above the WGS 84 ellipsoid in meters. The mean_sea_level_height

member provides the height of the WGS 84 ellipsoid above mean sea level at the current position, in meters. To

find the altitude above mean sea level, add the mean_sea_level_height member to the altitude member.

The epe member provides the estimated position error, 2 sigma, in meters. The eph member provides the epe but

only for horizontal meters. The epv member provides the epe but only for vertical meters.

The time_of_week member provides the number of seconds (excluding leap seconds) since the beginning of the

current week, which begins on Sunday at 12:00 AM (i.e., midnight Saturday night-Sunday morning). The

time_of_week member is based on Universal Coordinated Time (UTC), except UTC is periodically corrected for

leap seconds while time_of_week is not corrected for leap seconds.

To find UTC, subtract the leap_seconds member from time_of_week. Since this may cause a negative result for the

first few seconds of the week (i.e., when time_of_week is less than leap_seconds), care must be taken to properly

translate this negative result to a positive time value in the previous day. In addition, since time_of_week is a

floating point number and may contain fractional seconds, care must be taken to round off properly when using

time_of_week in integer conversions and calculations.

The position member provides the current position of the Client.

The east_velocity, north_velocity, and up_velocity are used to calculate the current speed of the Client as shown with

the equations below.

2 dimension speed = √ (east_velocity² + north_velocity²)

The week_number_days member provides the number of days that have occurred from UTC December 31st, 1989 to

the beginning of the current week (thus, week_number_days always represents a Sunday). To find the total number

of days that have occurred from UTC December 31st, 1989 to the current day, add week_number_days to the

number of days that have occurred in the current week (as calculated from the time_of_week member).

Need help? Email FleetSupport@garmin.com Page 84 001-00096-00 Rev. S

The enumerated values for the type_of_gps_fix member are shown below. It is important for the Server to inspect

this value to ensure that other data members are valid.

type_of_gps_fix enum

 {

 unusable = 0, /* failed integrity check */

 invalid = 1, /* invalid or unavailable */

 2D = 2, /* two dimensional */

 3D = 3, /* three dimensional */

 2D_diff = 4, /* two dimensional differential */

 3D_diff = 5 /* three dimensional differential */

 };

6 Appendices

6.1 Product IDs

The product_id is a unique number that represents a particular series type of Garmin device. Product ID’s are sent to

the Server during a Client response of the Product ID and Support protocol (see Section 5.1.3). The current

Garmin supported device list is shown below.

Product Decimal

Value

StreetPilot 2720 404

StreetPilot 7000 Series 412

StreetPilot c340 481

StreetPilot 2820 520

StreetPilot c500 Series 539

nuvi 310/360/370 566

zumo 500 Series 580

nuvi 600 Series 596

nuvi 300/350 Chinese 640

nuvi 300/350 Japanese 641

nuvi 300/350 Thai 642

nuvi 310/360 Chinese 643

nuvi 310/360 Japanese 644

nuvi 310/360 Thai 645

nuvi 310/360 Taiwanese 655

nuvi 310/360 Russian 656

nuvi 310/360 Arabic 657

zumo 500 Series Taiwanese 706

zumo 500 Series Japanese 722

nuvi 500 Series 723

nuvi 800 Series 726

nuvi 5000 Series 743

nuvi 700 Series 754

nuvi 205W Series 827

nuvi 700 Series Taiwanese 836

nuvi 700 Series Chinese 844

nuvi 205 Series 851

nuvi 300/350 855

nuvi 310/360/370 856

nuvi 705 Series 870

nuvi 700 Series Sing/Malay 905

Need help? Email FleetSupport@garmin.com Page 85 001-00096-00 Rev. S

nuvi 700 Series Thai 906

nuvi 700 Series Indonesian 925

nuvi 205 Series Indonesian 926

nuvi 205 Series Sing/Malay 927

nuvi 205 Series Chinese 928

nuvi 205W Series Indonesian 929

nuvi 205W Series Sing/Malay 930

nuvi 205W Series Chinese 931

nuvi 205W Series Taiwanese 932

nuvi 205W Series Japanese 933

nuvi 465T 943

nuvi 5000 Taiwanese 958

nuvi 5000 Chinese 959

nuvi 1200 Series 971

nuvi 1300/1400 Series 972

nuvi 205W Series Thai 1001

nuvi 205 Series India 1002

nuvi 705 Series Taiwanese 1007

nuvi 205 Series MT 1074

nuvi 1480 Series Japanese 1077

nuvi 205W Series MT 1091

nuvi 1300 Series MT 1104

nuvi 1100/1200 Series MT 1106

nuvi 2200 Series 1186

nuvi 2300 Series 1187

dezl 560 Series 1269

nuvi 2400 Series 1273

nuvi 2555 1371

nuvi 2585TV 1389

dezl 760 Series 1516

nuvi 27x7 Series 1517

nuvi 2xx7 Series - Subarctic 1582

nuvi 2xx9 Series - Subarctic 1758

nuvi 27x9 Series - Subarctic 1932

nuvi 2xx9 Series - MStar 1947

nuvi 2xx9 Series - MStar 1948

dezl 770 Series 2002

dezl 570 Series 2003

nuviCam 2043

fleet 660 2062

fleet 670 2063

nuvi 2xx7 Series - MStar 2077

dezlCam 2141

driveSmart 50 2267

driveSmart 60/70 2268

driveAssist 2270

fleet 660 8GB 2569

fleet 670 8GB 2570

driveSmart 51 2586

driveSmart 61 2588

driveAssist 51 2590

fleet 770 2735

fleet 780 2736

fleet 790, NA 2738

Need help? Email FleetSupport@garmin.com Page 86 001-00096-00 Rev. S

fleet 790, EU 2739

dezl 580 Series 2826

dezl 780 Series 2910

dezlCam 785 Series 2911

fleet 790, AU-NZ 2952

driveSmart 61 APAC 2996

driveSmart 55 3062

driveSmart 65 3064

driveSmart 55/65 3065

driveAssist 51 APAC 3109

6.2 Packet IDs

A packet ID is an 8-bit unsigned integer type used to identify the type of packet transmitted from the Client to the

Server or visa-versa.

The packet IDs that are relevant to this document are listed below. This is not a complete list of packet IDs. The

Server should ignore any unrecognized packet ID that it receives from the Client. The values of ASCII DLE (16

decimal) and ASCII ETX (3 decimal) are reserved and will never be used as packet IDs. This allows the software

implementation to detect packet boundaries more efficiently.

Packet ID type Value (decimal) Description

ACK 6 See Section 3.1.3

Command 10 See Section 5.2.1

Date/Time Data 14 See Section 5.2.3

NAK 21 See Section 3.1.3

Unit ID/ESN 38 See Section 5.2.2

PVT Data 51 See Section 5.2.4

StreetPilot Stop message 135 See Section

6.7.4.26.7.4.1

StreetPilot text message 136 See Section 6.7.1.5

Fleet Management packet 161 See Section 5.1

6.3 Fleet Management Packet IDs

A fleet management packet ID is a 16-bit unsigned integer type used to identify the type of fleet management related

data transmitted from one device to another.

The fleet management packet IDs are listed below. The Server should ignore any unrecognized fleet management

packet ID that it receives from the Client.

Note: The Description Section number contains hyperlinks to the noted Section.

Fleet Management Packet Type Value

(hex)

Description Server

to Client

Client to

Server

Enable Fleet Management Protocol Request 0x0000 Section 5.1.2 ✓

Product ID and Support Request 0x0001 Section 5.1.3 ✓

Product ID Data 0x0002 Section 5.1.3 ✓

Protocol Support Data 0x0003 Section 5.1.3 ✓

Unicode Support Request 0x0004 Section 5.1.4 ✓

Unicode Support Response 0x0005 Section 5.1.4 ✓

Need help? Email FleetSupport@garmin.com Page 87 001-00096-00 Rev. S

Fleet Management Packet Type Value

(hex)

Description Server

to Client

Client to

Server

IFTA File Request 0x0006 Section

6.6.9.16.6.9

✓

IFTA File Receipt 0x0007 Section

6.6.9.16.6.9

 ✓

IFTA Delete File Request 0x0008 Section

6.6.9.26.6.9.2

✓

IFTA Delete File Receipt 0x0009 Section

6.6.9.26.6.9.2

 ✓

Baud Rate Request 0x0011 Section 5.1.23 ✓

Baud Rate Receipt 0x0012 Section 5.1.23 ✓

Text Message Acknowledgement 0x0020 Section 5.1.5.1 ✓

Text Message (A602 Open Server to Client) 0x0021 Section

6.7.1.26.7.1.1

✓

Text Message (Simple Acknowledgement) 0x0022 Section

6.7.1.36.7.1.3

✓

Text Message (Yes/No Confirmation) 0x0023 Section

6.7.1.46.7.1.4

✓

Text Message (Open Client to Server) 0x0024 Section

6.7.1.16.7.1.1

 ✓

Text Message Receipt (Open Client to Server) 0x0025 Section

6.7.1.16.7.1.1

✓

A607 Client to Server Text Message 0x0026 Section 5.1.5.5 ✓

Set Canned Response List 0x0028 Section 5.1.5.1.3 ✓

Canned Response List Receipt 0x0029 Section 5.1.5.1.3 ✓

Text Message (A604 Open Server to Client) 0x002a Section 5.1.5.1.1 ✓

Text Message Receipt (A604 Open Server to Client) 0x002b Section 5.1.5.1.1 ✓

Text Message Ack Receipt 0x002c Section 5.1.5.1.3 ✓

Text Message Delete 0x002d Section 5.1.5.3 ✓

Text Message Delete Response 0x002e Section 5.1.5.3 ✓

Set Canned Response 0x0030 Section 5.1.5.4.1 ✓

Delete Canned Response 0x0031 Section 5.1.5.4.2 ✓

Set Canned Response Receipt 0x0032 Section 5.1.5.4.1 ✓

Delete Canned Response Receipt 0x0033 Section 5.1.5.4.2 ✓

Request Canned Response List Refresh 0x0034 Section 5.1.5.4.3 ✓

Text Message Status Request 0x0040 Section 5.1.5.2 ✓

Text Message Status 0x0041 Section 5.1.5.2 ✓

Set Canned Message 0x0050 Section 5.1.5.6.1 ✓

Set Canned Message Receipt 0x0051 Section 5.1.5.6.1 ✓

Delete Canned Message 0x0052 Section 5.1.5.6.2 ✓

Delete Canned Message Receipt 0x0053 Section 5.1.5.6.2 ✓

Refresh Canned Message List 0x0054 Section 5.1.5.6.3 ✓

Long Text Message (A611 Server to Client) 0x0055 Section 5.1.5.1.2 ✓

Long Text Message Receipt (A611 Server to Client) 0x0056 Section 5.1.5.1.2 ✓

A602 Stop 0x0100 Section

6.7.4.16.7.4.1

✓

A603 Stop 0x0101 Section 5.1.6.1 ✓

Sort Stop List 0x0110 Section 5.1.10 ✓

Sort Stop List Acknowledgement 0x0111 Section 5.1.10 ✓

Create Waypoint 0x0130 Section 5.1.11.1 ✓

Create Waypoint Receipt 0x0131 Section 5.1.11.1 ✓

Need help? Email FleetSupport@garmin.com Page 88 001-00096-00 Rev. S

Fleet Management Packet Type Value

(hex)

Description Server

to Client

Client to

Server

Delete Waypoint 0x0132 Section 5.1.11.3 ✓

Waypoint Deleted 0x0133 Section 5.1.11.2 ✓ ✓

Waypoint Deleted Receipt 0x0134 Section 5.1.11.2 ✓

Delete Waypoint by Category 0x0135 Section 5.1.11.4 ✓

Delete Waypoint by Category Receipt 0x0136 Section 5.1.11.4 ✓

Create Waypoint Category 0x0137 Section 5.1.11.5 ✓

Create Waypoint Category Receipt 0x0138 Section 5.1.11.5 ✓

ETA Data Request 0x0200 Section

5.1.8.25.1.8

✓

ETA Data 0x0201 Section

5.1.8.25.1.8

 ✓

ETA Data Receipt 0x0202 Section

5.1.8.25.1.8

✓

A623 ETA Set Report Mode 0x0203 Section 5.1.8.1 ✓

A623 ETA Set Report Mode Receipt 0x0204 Section 5.1.8.1 ✓

Stop Status Request 0x0210 Section 5.1.7 ✓

Stop Status 0x0211 Section 5.1.7 ✓

Stop Status Receipt 0x0212 Section 5.1.7 ✓

Auto-Arrival 0x0220 Section 5.1.9 ✓

Data Deletion 0x0230 Section 5.1.14 ✓

User Interface Text 0x0240 Section 5.1.15 ✓

User Interface Text Receipt 0x0241 Section 5.1.15 ✓

Message Throttling Command 0x0250 Section 5.1.17.1 ✓

Message Throttling Response 0x0251 Section 5.1.17.1 ✓

Message Throttling Query 0x0252 Section 5.1.17.2 ✓

Message Throttling Query Response 0x0253 Section 5.1.17.2 ✓

Ping (Communication Link Status) 0x0260 Section 5.1.16 ✓ ✓

Ping (Communication Link Status) Response 0x0261 Section 5.1.16 ✓ ✓

Fleet Management Packet Type Value

in (hex)

Description Server

to Client

Client to

Server

GPI File Transfer Start 0x0400 Section 5.1.13.1.1 ✓

GPI File Data Packet 0x0401 Section 5.1.13.1.3 ✓

GPI File Transfer End 0x0402 Section 5.1.13.1.5 ✓

GPI File Start Receipt 0x0403 Section 5.1.13.1.2 ✓

GPI Packet Receipt 0x0404 Section 5.1.13.1.4 ✓

GPI File End Receipt 0x0405 Section 5.1.13.1.6 ✓

GPI File Information Request 0x0406 Section 5.1.13.3.1 ✓

GPI File Information 0x0407 Section 5.1.13.3.1 ✓

Path Specific Stop File Server Transfer Start 0x0400 Section 5.1.13.1.1 ✓

Path Specific Stop File Server Data Packet 0x0401 Section 5.1.13.1.3 ✓

Path Specific Stop File Server Transfer End 0x0402 Section 5.1.13.1.5 ✓

Path Specific Stop File Client Start Receipt 0x0403 Section 5.1.13.1.2 ✓

Path Specific Stop Packet Client Receipt 0x0404 Section 5.1.13.1.4 ✓

Path Specific Stop File Client End Receipt 0x0405 Section 5.1.13.1.6 ✓

Custom Form File Server Transfer Start 0x0400 Section 5.1.13.1.1 ✓

Custom Form File Server Data Packet 0x0401 Section 5.1.13.1.3 ✓

Custom Form File Server Transfer End 0x0402 Section 5.1.13.1.5 ✓

Need help? Email FleetSupport@garmin.com Page 89 001-00096-00 Rev. S

Fleet Management Packet Type Value

in (hex)

Description Server

to Client

Client to

Server

Custom Form File Client Start Receipt 0x0403 Section 5.1.13.1.2 ✓

Custom Form Packet Client Receipt 0x0404 Section 5.1.13.1.4 ✓

Custom Form File Client End Receipt 0x0405 Section 5.1.13.1.6 ✓

Custom Form File Client Transfer Start 0x0400 Section 5.1.13.2.1 ✓

Custom Form File Client Data Packet 0x0401 Section 5.1.13.2.3 ✓

Custom Form File Client Transfer End 0x0402 Section 5.1.13.2.5 ✓

Custom Form File Server Start Receipt 0x0403 Section 5.1.13.2.2 ✓

Custom Form Packet Server Receipt 0x0404 Section 5.1.13.2.4 ✓

Custom Form File Server End Receipt 0x0405 Section 5.1.13.2.6 ✓

A618 Stop File Server Transfer Start 0x0400 Section 5.1.13.1.1 ✓

A618 Stop File Server Data Packet 0x0401 Section 5.1.13.1.3 ✓

A618 Stop File Server 0x0402 Section 5.1.13.1.5 ✓

A618 Stop File Client 0x0403 Section 5.1.13.1.2 ✓

A618 Stop File Client 0x0404 Section 5.1.13.1.4 ✓

A618 Stop File Client 0x0405 Section 5.1.13.1.6 ✓

Set Driver Status List Item 0x0800 Section 5.1.12.3.1 ✓

Delete Driver Status List Item 0x0801 Section 5.1.12.3.2 ✓

Set Driver Status List Item Receipt 0x0802 Section 5.1.12.3.1 ✓

Delete Driver Status List Item Receipt 0x0803 Section 5.1.12.3.2 ✓

Driver Status List Refresh 0x0804 Section 5.1.12.3.3 ✓

Request Driver ID 0x0810 Section 5.1.12.1 ✓

Driver ID Update 0x0811 Section 5.1.12.1 ✓ ✓

Driver ID Receipt 0x0812 Section 5.1.12.1 ✓ ✓

A607 Driver ID Update 0x0813 Section 5.1.12.1.1 ✓ ✓

Request Driver Status 0x0820 Section 5.1.12.4 ✓

Driver Status Update 0x0821 Section 5.1.12.4 ✓ ✓

Driver Status Receipt 0x0822 Section 5.1.12.4 ✓ ✓

A607 Driver Status Update 0x0823 Section 5.1.12.4.1 ✓ ✓

FMI Safe Mode 0x0900 Section 5.1.18 ✓

FMI Safe Mode Receipt 0x0901 Section 5.1.18 ✓

Speed Limit Alert Setup 0x1000 Section 5.1.19 ✓

Speed Limit Alert Setup Receipt 0x1001 Section 5.1.19 ✓

Speed Limit Alert 0x1002 Section 5.1.19 ✓

Speed Limit Alert Receipt 0x1003 Section 5.1.19 ✓

Driver Login Request 0x1101 Section 6.6.16.6.1 ✓

Driver Login Response 0x1102 Section 6.6.16.6.1 ✓

(generic) Driver Profile Request 0x1103 Section

6.6.1.2.16.6.1.2.1

 ✓

HOS_1.0 Driver Profile Response 0x1104 Section

6.6.1.2.16.6.1.2.1

✓

HOS_1.0 Driver Profile Update 0x1105 Section

6.6.3.16.6.3.1

✓

HOS_1.0 Event Log Request 0x1106 Section

6.6.1.3.16.6.1.3.1

 ✓

HOS_1.0 Event Log Response 0x1107 Section

6.6.1.3.26.6.1.3.2

✓

HOS_1.0 Event Log Receipt 0x1108 Section

6.6.1.3.36.6.1.3.3

 ✓

HOS_1.0 Shipment Request 0x1109 Section

6.6.1.46.6.1.4

 ✓

Need help? Email FleetSupport@garmin.com Page 90 001-00096-00 Rev. S

Fleet Management Packet Type Value

in (hex)

Description Server

to Client

Client to

Server

HOS_1.0 Shipment Response 0x110a Section

6.6.1.46.6.1.4

✓

HOS_1.0 Shipment Receipt 0x110b Section

6.6.1.46.6.1.4

 ✓

HOS_1.0 Annotation Request 0x110d Section

6.6.1.56.6.1.5

 ✓

HOS_1.0 Annotation Response 0x110e Section

6.6.1.56.6.1.5

✓

HOS_1.0 Annotation Receipt 0x110f Section

6.6.1.56.6.1.5

 ✓

(generic) Driver Profile Receipt 0x110c Section

6.6.3.16.6.3.1

 ✓

HOS_2.0 Driver Profile Update 0x1110 Section

6.6.3.26.6.3.2

✓

HOS_2.0 Driver Profile Response 0x1111 Section

6.6.1.2.26.6.1.2.2

✓

Custom Form Delete Request 0x1200 Section 5.1.21.4 ✓

Custom Form Delete Receipt 0x1201 Section 5.1.21.4 ✓

Custom Form Move Position Request 0x1202 Section 5.1.21.5 ✓

Custom Form Move Position Receipt 0x1203 Section 5.1.21.5 ✓

Custom Form Position Request 0x1204 Section 5.1.21.6 ✓

Custom Form Position Receipt 0x1205 Section 5.1.21.6 ✓

Path Specific Stop Status Info 0x1220 Section 5.1.6.2.2.1 ✓

Path Specific Stop Status Info Receipt 0x1221 Section 5.1.6.2.2.1 ✓

Custom Avoidance New/Modify Request 0x1230 Section 5.1.22.2 ✓

Custom Avoidance New/Modify Receipt 0x1231 Section 5.1.22.2 ✓

Custom Avoidance Delete Request 0x1232 Section 5.1.22.3 ✓

Custom Avoidance Delete Receipt 0x1233 Section 5.1.22.3 ✓

Custom Avoidance Enable/Disable Request 0x1234 Section 5.1.22.4 ✓

Custom Avoidance Enable/Disable Receipt 0x1235 Section 5.1.22.4 ✓

Custom Avoidance Area Enable Request 0x1236 Section 5.1.22.1 ✓

Custom Avoidance Area Enable Receipt 0x1237 Section 5.1.22.1 ✓

Driver Auto Status Update 0x1300 Section 6.6.66.6.6 ✓

Driver Auto Status Update Receipt 0x1301 Section 6.6.66.6.6 ✓

Server Initiated Logoff Client Driver 0x1310 Section

6.6.2.26.6.2.2

✓

Server Initiated Logoff Client Driver Receipt 0x1311 Section

6.6.2.26.6.2.2

 ✓

Driver 8-Hour Rule Enable 0x1312 Section 6.6.86.6.8 ✓

Driver 8-Hour Rule Enable Receipt 0x1313 Section 6.6.86.6.8 ✓

Alert Pop-up 0x1400 Section 5.1.24 ✓

Alert Pop-up Receipt 0x1401 Section 5.1.24 ✓

Configure Sensor Display 0x1402 Section 5.1.25.1 ✓

Configure Sensor Display Receipt 0x1403 Section 5.1.25.1 ✓

Update Sensor Display Status 0x1406 Section 5.1.25.2 ✓

Update Sensor Display Status Receipt 0x1403 Section 5.1.25.2 ✓

Delete Sensor Display 0x1404 Section 5.1.25.3 ✓

Delete Sensor Display Receipt 0x1405 Section 5.1.25.3 ✓

Sensor Display List Position 0x1407 Section 5.1.25.4 ✓

Sensor Display List Position Receipt 0x1408 Section 5.1.25.4 ✓

Need help? Email FleetSupport@garmin.com Page 91 001-00096-00 Rev. S

Fleet Management Packet Type Value

in (hex)

Description Server

to Client

Client to

Server

A619 Auto-Status Driver Update 0x1500 Section

6.6.10.16.6.10.1

✓

A619 Auto-Status Driver Update Receipt 0x1501 Section

6.6.10.16.6.10.1

 ✓

A619 Driver 8-Hour Rule Enable 0x1500 Section

6.6.10.26.6.10.2

✓

A619 Driver 8-Hour Rule Enable Receipt 0x1501 Section

6.6.10.26.6.10.2

 ✓

A619 Periodic Driver Status 0x1500 Section

6.6.10.36.6.10.3

✓

A619 Periodic Driver Status Receipt 0x1501 Section

6.6.10.36.6.10.3

 ✓

A622 Lock Dash Camera Settings 0x1600 Section 5.1.26.1 ✓

A622 Lock Dash Camera Settings Receipt 0x1601 Section 5.1.26.1 ✓

A622 Set Dash Camera Settings 0x1602 Section 5.1.26.2 ✓

A622 Set Dash Camera Settings Receipt 0x1603 Section 5.1.26.2 ✓

A622 Get Dash Camera Settings 0x1604 Section 5.1.26.3 ✓

A622 Get Dash Camera Settings Receipt 0x1605 Section 5.1.26.3 ✓

A622 Set Dash Camera Notification Request 0x1606 Section 5.1.26.4 ✓

A622 Set Dash Camera Notification Receipt 0x1607 Section 5.1.26.4 ✓

A622 Get Dash Camera Notification Request 0x1608 Section 5.1.26.5 ✓

A622 Get Dash Camera Notification Receipt 0x1609 Section 5.1.26.5 ✓

A622 Dash Camera Warning Notification 0x160a Section 5.1.26.6 ✓

A622 Dash Camera Warning Notification Receipt 0x160b Section 5.1.26.6 ✓

A622 Dash Camera Incident File Notification 0x160c Section 5.1.26.7 ✓

A622 Dash Camera Incident File Receipt 0x160d Section 5.1.26.7 ✓

6.4 Command IDs

The command IDs listed below are decimal. This is not a complete list of command IDs. Only the command IDs

that are relevant within this document are listed. The Server should ignore unrecognized command IDs.

Command Description ID

Request Date/Time Data 5

Request Unit ID/ESN 14

Turn on PVT Data 49

Turn off PVT Data 50

6.5 CRC-32 Algorithm

6.5.1 CRC method

FMI uses the CRC algorithm named “CRC-32 Reversed Representation (0xEDB88320)”. The code below

generates the CRC table shown in Section 6.5.2.6.5.2

 unsigned long c;

 int n, k;

 for (n = 0; n < 256; n++

 {

 c = (unsigned long)n;

 for (k = 0; k < 8; k++)

Need help? Email FleetSupport@garmin.com Page 92 001-00096-00 Rev. S

 {

 if (c & 1)

 {

 c = 0xedb88320L ^ (c >> 1);

 }

 else

 {

 c = c >> 1;

 }

 }

 crc_table[n] = c;

 }

6.5.2 CRC algorithm example

The following is the “CRC-32 Reversed Representation (0xEDB88320)” implementation used by the Fleet

Management Interface. To compute a CRC, call UTL_calc_crc32, passing a pointer to the file data, the size of the

file, and an initial value of zero. For example:

uint32 fmi_crc = UTL_calc_crc32(file_data, file_size, 0);

Alternately, the CRC value can be computed one block of data at a time by calling the UTL_accumulate_crc32

function for each block of file data sequentially, then calling UTL_complete_crc32 at the end to complete the

computation. This approach can be used when it is not feasible to keep the entire file in memory.

uint32 fmi_crc = 0;

foreach (data_block in file_data)

 {

 fmi_crc = UTL_accumulate_crc32(data_block, sizeof(data_block), fmi_crc);

 }

fmi_crc = UTL_complete_crc32(fmi_crc);

Need help? Email FleetSupport@garmin.com Page 93 001-00096-00 Rev. S

/***
*

* MODULE NAME:

* UTL_crc.c - CRC Routines

*

* DESCRIPTION:

*

* PUBLIC PROCEDURES:

* Name Title

* ----------------------- --------------------------------------

* UTL_calc_crc32 Calculate 32-bit CRC

*

* PRIVATE PROCEDURES:

* Name Title

* ----------------------- --------------------------------------

* UTL_accumulate_crc32 Accumulate 32-bit CRC Calculation

* UTL_complete_crc32 Complete 32-bit CRC Calculation

*

* LOCAL PROCEDURES:

* Name Title

* ----------------------- --------------------------------------

*

* NOTES:

*

* Copyright 1990-2008 by Garmin Ltd. or its subsidiaries.

***/

/*--

 MEMORY CONSTANTS

--*/

static uint32 const my_crc32_tbl[256] =

 {

 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535,

0x9E6495A3,

 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07,

0x90BF1D91,

 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551,

0x83D385C7,

 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63,

0x8D080DF5,

 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD,

0xA50AB56B,

 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF,

0xABD13D59,

 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599,

0xB8BDA50F,

 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB,

0xB6662D3D,

 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5,

0xE8B8D433,

 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97,

0xE6635C01,

 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1,

0xF50FC457,

 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3,

0xFBD44C65,

 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D,

0xD3D6F4FB,

 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F,

0xDD0D7CC9,

 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409,

0xCE61E49F,

 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B,

0xC0BA6CAD,

 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615,

0x73DC1683,

 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27,

0x7D079EB1,

 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671,

0x6E6B06E7,

Need help? Email FleetSupport@garmin.com Page 94 001-00096-00 Rev. S

 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43,

0x60B08ED5,

 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD,

0x48B2364B,

 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF,

0x4669BE79,

 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9,

0x5505262F,

 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B,

0x5BDEAE1D,

 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785,

0x05005713,

 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7,

0x0BDBDF21,

 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1,

0x18B74777,

 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3,

0x166CCF45,

 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D,

0x3E6E77DB,

 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F,

0x30B5FFE9,

 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729,

0x23D967BF,

 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B,

0x2D02EF8D,

 };

Need help? Email FleetSupport@garmin.com Page 95 001-00096-00 Rev. S

/*--

 PROCEDURES

--*/

/***

*

* PROCEDURE NAME:

* UTL_calc_crc32 - Calculate 32-bit CRC

*

* DESCRIPTION:

*

*

***/

uint32 UTL_calc_crc32

 (

 uint8 const * const data,

 uint32 const size,

 uint32 const initial_value = 0

)

{

/*--

Local Variables

--*/

uint32 actual_crc;

actual_crc = UTL_accumulate_crc32(data, size, initial_value);

actual_crc = UTL_complete_crc32(actual_crc);

return(actual_crc);

} /* UTL_calc_crc32() */

/***

*

* PROCEDURE NAME:

* UTL_accumulate_crc32 - Accumulate 32-bit CRC Calculation

*

* DESCRIPTION:

*

***/

uint32 UTL_accumulate_crc32

 (

 uint8 const * const data,

 uint32 const size,

 uint32 const accumulative_value

)

{

/*--

Local Variables

--*/

uint32 actual_crc;

uint32 i;

actual_crc = accumulative_value;

for(i = 0; i < size; i++)

 {

 actual_crc = my_crc32_tbl[(data[i] ^ actual_crc) & 255] ^ (0xFFFFFF & (actual_crc >> 8));

 }

return(actual_crc);

} /* UTL_accumulate_crc32 */

Need help? Email FleetSupport@garmin.com Page 96 001-00096-00 Rev. S

/***

*

* PROCEDURE NAME:

* UTL_complete_crc32 - Complete 32-bit CRC Calculation

*

* DESCRIPTION:

*

*

***/

uint32 UTL_complete_crc32

 (

 uint32 const actual_crc

)

{

return(~actual_crc);

} /* UTL_complete_crc32() */

6.6 Hours of Service (HOS) Functionality

The Hours of Service FMI functionality is provided on Dezl navigation devices. Current functionality is intended to

work with a Server to qualify as an Automatic On-Board Recording Device (AOBRD) that would meet the

FMCSA's §395.15 standard.

To utilize the AOBRD functionality, a driver must be “logged-in” to the Garmin device with the A610 or A615

protocol enabled. The full login procedure requires 5 sequential steps, which are listed below (in the order of

execution), but note that a driver will be shown as “Logged-in” upon completion of the Driver Profile step.

1. Driver Authentication (see Section 6.6.1.16.6.1)

- Client sends Driver ID and Password to Server for authentication (packet_id = 0x1101)

- Server responds indicating pass/fail result (packet_id = 0x1102)

2. Download of Driver’s Profile (see Section 6.6.1.26.6.1.2)

- Client requests a driver’s profile (packet_id = 0x1103)

- Server responds with driver profile data (packet_id = 0x1104 (Property only), or 0x1111)

Note: Following a successful driver profile download, the driver will be shown as “Logged-in” on the

Client. Any errors occurring in the remaining login steps (steps 3 to 5) will not affect this driver’s

“Logged-in” state (e.g., errors during download of Status Change logs, errors during download of

Shipments, or errors during download of Annotations).

3. Download of Driver’s Status Change logs (see Section 6.6.1.36.6.1.3)

- Client requests availability for a driver’s Status Change log file (packet_id = 0x1106)

- Server responds with yes/no that a log file is available (packet_id = 0x1107)

- Client requests Server for the driver’s Status Change log file (packet_id = 0x1108)

- Server responds by sending a log file using the File Transfer protocol (see Section for packet ids)

4. Download of Driver’s Shipments (see Section 6.6.1.46.6.1.4)

- Client requests a single driver’s shipment record (packet_id = 0x1109)

- Server responds with a shipment record (packet_id = 0x110a)

- Client responds with a ACK (packet_id = 0x110b)

- Server responds with next shipment record or a “done” indicator (packet_id = 0x110a)

- Client responds with a ACK (packet_id = 0x110b)

5. Download of Driver’s Annotations (see Section 6.6.1.56.6.1.5)

- Client requests a single driver’s annotation record (packet_id = 0x110d)

- Server responds with a shipment record (packet_id = 0x110e)

- Client responds with a ACK (packet_id = 0x110f)

- Server responds with next shipment record or a “done” indicator (packet_id = 0x110e)

- Client responds with a ACK (packet_id = 0x110f)

Need help? Email FleetSupport@garmin.com Page 97 001-00096-00 Rev. S

6.6.1 AOBRD Driver Login

6.6.1.1 AOBRD Driver Authentication Protocol

The login protocol is used to allow a driver to log into the Garmin device, and take advantage of the available

electronic logging capabilities. The driver must be identified within the system to allow the appropriate data to be

loaded onto the device, so events recorded by the device can be attributed to the correct person. The packet

sequence is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x1101 –Driver Login Request driver_login_request_data_type

1 Server to Client 0x1102 – Driver Login Response driver_login_response_data_type

Client to Server type definition for the driver_login_request_data_type is shown below. This data type is only

supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 time_type ui_timestamp;

 uchar_t8 driver_password[]; /* 20 byte constant length, null-terminated string */

 uchar_t8 driver_id[]; /* Variable length, null terminated string, 50 bytes max */

 } driver_login_request_data_type;

The ui_timestamp is the time that the login request was sent from the Client. The driver_password is the password

for the driver logging into the system, and driver_id is the login ID of the driver.

Server to Client type definition for the driver_login_response_data_type is shown below. This data type is only

supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 time_type ui_timestamp;

 uint8 result_code;

 } driver_login_response_data_type;

The ui_timestamp will be identical to the value received in the Driver Login Request packet. The result_code

indicates whether or not the login was successful. A result_code of zero indicates success, a nonzero result_code

means that an error occurred, according to the table below.

Note: The protocol should not continue if the result_code is nonzero.

Result Code (Decimal) Meaning

0 Success

1 Error

2 Unsupported mode

6.6.1.2 AOBRD Driver Profile Protocols

The driver profile protocols are used to provide the Client with the most up-to-date driver profile information. After

the Client has successfully completed a login exchange, it will request the profile data for that driver. Later during

device use, the Server can also push driver profile updates to the Client.

Need help? Email FleetSupport@garmin.com Page 98 001-00096-00 Rev. S

6.6.1.2.1 Driver Profile Request to Server (Property Carrying only)

This protocol allows the Client to request the profile information for the specified driver. The packet sequence is

shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x1103 – (generic) Driver Profile Request driver_profile_request_data_type

1 Server to Client 0x1104 – HOS_1 Driver Profile Response driver_profile_response_data_type

Client to Server type definition for the driver_profile_request_data_type is shown below. This data type is only

supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 uchar_t8 driver_id[]; /* variable length, null terminated string, 50 bytes max */

 } driver_profile_request_data_type;

The driver_id is the login ID of the driver.

The Server to Client type definition for the driver_profile_response_data_type is shown below. This data type is

only supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 uint8 reserved[4]; /* Set to 0 */

 uchar_t8 first_name[]; /* 35 byte constant length, null-terminated string */

 uchar_t8 last_name[]; /* 35 byte constant length, null-terminated string */

 uchar_t8 driver_id[]; /* 40 byte constant length, null-terminated string */

 uchar_t8 carrier_name[]; /* 120 byte constant length, null-terminated string */

 uchar_t8 carrier_id[]; /* 8 byte constant length, null-terminated string */

 uint8 rule_set;

 uint8 time_zone;

 uint8 reserved; /* Set to 0 */

 uint8 result_code;

 } driver_profile_response_data_type;

The first_name and last_name will be the driver’s first and last names, respectively. The driver_id will be identical

to the value received in the Driver Profile Request packet. The carrier_name is the name or trade name of the motor

carrier company and possibly the address of that company. The carrier_id is the USDOT number of the motor

carrier.

The rule_set specifies the hours-of-services rules used by the driver. The table below defines the different values for

rule_set.

Rule Set (Decimal) Meaning

0 Sixty hour/seven day rule set

1 Seventy hour/eight day rule set

The time_zone is the time zone to use when recording driver statuses. The table below defines the different values

for time_zone.

Time Zone (Decimal) Meaning

0 Eastern Time Zone

1 Central Time Zone

2 Mountain Time Zone

3 Pacific Time Zone

4 Alaska Time Zone

5 Hawaii Time Zone

Need help? Email FleetSupport@garmin.com Page 99 001-00096-00 Rev. S

The result_code indicates whether or not driver profile being provided by the Server is valid. A result_code of zero

indicates success, a nonzero result_code means that an error occurred, according to the table below.

Note: The protocol should not continue if the result_code is nonzero.

Result Code (Decimal) Meaning

0 Success

1 Unknown Driver ID

2 Error

6.6.1.2.2 Driver Profile Request to Server (Property/Passenger Carrying)

This protocol allows the Client to request the profile information for the specified driver. This event occurs when a

driver logs-in on the Client. The request is sent to the Server using the same request packet as used for HOS_1.0

driver login. The Server then has the option to either send the new “HOS_2.0 Driver Profile” format or the existing

“HOS_1.0 driver profile format” (which will not provide Passenger-carrying rule sets or Adverse Conditions

functionality).

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x1103 – (generic) Driver Profile Request driver_profile_request_data_type

1 Server to Client 0x1111 – HOS_2.0 Driver Profile Response hos2_driver_profile_response_data_type

The Client to Server type definition for driver_profile_request_data_type is shown below. This data type is only

supported on Clients that report D610 or D615 as part of their protocol support data.

typedef struct /* D610 or D615 */

 {

 uchar_t8 driver_id[]; /* variable length, null terminated string, 50 bytes max */

 } driver_profile_request_data_type;

The driver_id is the login ID of the driver.

The Server has the option to either respond with a “HOS_2.0 Driver Profile” profile structure that contains

Passenger/Property Carrying and Adverse Conditions entries, or to respond using the HOS_1.0 driver profile

structure. The packet shown below depicts a Server’s response using the new “HOS_2.0 Driver Profile”

hos2_driver_profile _response_data_type with Passenger/Property and Adverse Conditions.

Server to Client type definition for the HOS_2.0 Driver Profile Response is shown below. This data type is only

supported on Clients that report D615 as part of their protocol support data.

typedef struct /* D615 */

 {

 char first_name[]; /* 35 byte constant length, null-terminated string */

 char last_name[]; /* 35 byte constant length, null-terminated string */

 char driver_id []; /* 40 byte constant length, null-terminated string */

 char carrier_name[]; /* 120 byte constant length, null-terminated string */

 char carrier_id[]; /* 8 byte constant length, null-terminated string */

 uint8 long_term_rule_set; /* 0 = sixty-hour/7 day rule-set, */

 /* 1 = seventy-hour/8 day rule-set */

 uint8 load_type_rule_set; /* 0 = property-carrying vehicle, */

Need help? Email FleetSupport@garmin.com Page 100 001-00096-00 Rev. S

 /* 1 = passenger-carrying vehicle */

 date_time_t32 adverse_condition_time; /* Timestamp of Client reported Adverse Conditions */

 /* If no Timestamp exists, set to 0 */

 uint8 time_zone; /* See Time Zone table below */

 uint8 reserved; /* Set to 0 */

 uint8 result_code; /* See Result Code table below */
 } hos2_driver_profile_response_data_type;

The first_name and last_name will be the driver’s first and last names, respectively. These values MUST match the

values provided in the original driver profile request. The driver_id will be identical to the value received in the

Driver Profile Request packet.

The carrier_name is the name or trade name of the motor carrier company and possibly the address of that

company. The carrier_id is the USDOT number of the motor carrier.

The long_term_rule_set is the set of hours-of-service driving rules for the driver. The load_type_rule_set specifies

the type of load the driver is carrying.

The adverse_condition_time reflects a Timestamp from an earlier Client reported Adverse Conditions Annotation

packet described in Section 6.6.4.1.3.16.6.4.1.3.1. If the Server had not received an Adverse Conditions Annotation

packet from the Client for this driver, the Server should ensure this member value is set to ‘0’.

The time_zone is the time zone to use when recording driver statuses (see below):

Time Zone (Decimal) Meaning

0 Eastern Time Zone

1 Central Time Zone

2 Mountain Time Zone

3 Pacific Time Zone

4 Alaska Time Zone

5 Hawaii Time Zone

The result_code indicates whether or not the driver profile being provided by the Server is valid. A result_code of

zero indicates success, a nonzero result_code means that an error occurred, according to the table below:

Note: The login protocol will not continue if the result_code is nonzero.

Result Code (Decimal) Meaning

0 Success

1 Unknown Driver ID

2 Error

6.6.1.3 Duty Status Change Event Logs File Request by Client

On the Server side, Client driver status change event log records are collected as a list of contiguous records, and

sent from the Server to the Client using the File Transfer Protocols described in Section 5.1.13.1 during driver login.

This restores a driver’s status change history on the Client.

This protocol allows the Client to request a driver’s Duty Status Change event logs from the Server. This process is

typically done during driver login. A log file will consist of one contiguous bundle of individual Duty Status

Change events, which would have previously been reported from the Client during driver status change events.

Need help? Email FleetSupport@garmin.com Page 101 001-00096-00 Rev. S

NOTE: Each record contained in this log file should be an exact copy (format) of the original Duty Status

Change Event packet as originally sent from the Client.

Event Log files can potentially be very large, so the GZIP file compression method was implemented to optimize

file reception. The Server has the option to send non-compressed Event Log files or GZIP compressed files (in the

GZIP file compression format), the Client will accept either format.

NOTE: Event Log files can be transferred in the compressed GZIP file format or in the non-compressed format.

Each record within the log will be interrogated by the Client for proper format and contents. Each Duty Status

Change record must indicate type ‘1’ in the Event Type field as defined in the event header in Section 6.6.4.1.1.

Any other event types will cause an error to be returned to the Server.

In addition, the record entries in the log file should be ordered from oldest to newest. Any Client detected error will

halt record processing of a log file, and results in no Duty Status changes being saved for that driver. The packet

sequence is shown below:

N Direction Fleet Management

Packet ID

Hyper-

Link

Fleet Management Packet

Data Type

0 Client to

Server

0x1106 – Driver Event Log

Request

6.6.1.3.1 driver_event_log_request_data_type

1 Server to

Client

0x1107 – Driver Event Log

Response

6.6.1.3.2 driver_event_log_response_data_type

2 Client to

Server

0x1108 – Driver Event Log

Receipt

6.6.1.3.3 driver_event_log_receipt_data_type

3 Server to

Client

0x0400 – File Transfer Start

Packet ID

5.1.13.1.1 file_info_data_type

4 Client to

Server

0x0403 – File Start Receipt

Packet ID

5.1.13.1.2 file_receipt_data_type

5..n-

3

Server to

Client

0x0401 – File Data Packet

ID

5.1.13.1.3 file_packet_data_type

6..n-

2

Client to

Server

0x0404 – Packet Receipt

Packet ID

5.1.13.1.4 packet_receipt_data_type

n-1 Server to

Client

0x0402 – File Transfer End

Packet ID

5.1.13.1.5 file_end_data_type

n Client to

Server

0x0405 – File End Receipt

Packet ID

5.1.13.1.6.25.1.13.1.6 log_file_receipt_data_type

NOTE: The File Transfer portion is performed by the generic File Transfer in this document, and can be found by

clicking the hyperlinks above.

6.6.1.3.1 Client to Server - Packet ID: 0x1106 - Driver Event Log Request

The Client to Server type definition for the driver_event_log_request_data_type is shown below. This data type is

only supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 uchar_t8 driver_id[]; /* variable length, null terminated string, 40 bytes max */

 } driver_event_log_request_data_type;

The driver_id is the login ID of the driver.

Back to packet sequence table click here> 6.6.1.3

Need help? Email FleetSupport@garmin.com Page 102 001-00096-00 Rev. S

6.6.1.3.2 Server to Client - Packet ID: 0x1107 - Driver Event Log Response

Server to Client type definition for the driver_event_log _response_data_type is shown below. This data type is

only supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 uchar_t8 driver_id[]; /* 40 byte constant length, null-terminated string */

 uint8 result_code;

 } driver_event_log_response_data_type;

The driver_id should be identical to the value sent in the Driver Event Log Request packet. The result_code

indicates whether or not the Server will be able to send a log file to the Client. A result_code of zero indicates that

an event log file will follow. A nonzero result_code means that no event log file will be sent.

Result Code (Decimal) Meaning

0 Event log file will follow

1 No event logs exist for this driver

2 Error

Back to packet sequence table, click here> 6.6.1.3

6.6.1.3.3 Client to Server - Packet ID: 0x1108 - Driver Event Log Receipt

The Client to Server type definition for the driver_event_log _receipt_data_type is shown below. This data type is

only supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 uchar_t8 driver_id[]; /* 40 byte constant length, null-terminated string */

 uint8 result_code;

 } driver_event_log_receipt_data_type;

The driver_id will be identical to the value received in the Driver Event Log Response packet. The result_code

indicates whether or not the Server can start sending the log file to the Client. A result_code of zero indicates that

the Client is ready to receive the event log file. A nonzero result_code means that the Server should abort sending

the event log file.

Result Code

(Decimal)

Meaning

0 Send the event log

1 Driver ID sent from Server does not match the requested Driver ID

2 Invalid Server response

3 Unexpected Server response

If the Server receives a result code of “0", it will then begin to transfer the event log file to the Client using the File

Transfer Protocol described in Section 5.1.13.1 and repeated below.

Back to packet sequence table, click here> 6.6.1.3

6.6.1.4 AOBRD Shipment Protocol

The shipment protocol allows the Server to provide the Client with a set of shipments that are assigned to the

specified driver. The Client will request this set of shipments using the packet sequence below:

Need help? Email FleetSupport@garmin.com Page 103 001-00096-00 Rev. S

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x1109 – Shipment Request shipment_request_data_type

1..n-1 Server to Client 0x110a – Shipment Response shipment_response_data_type

2..n Client to Server 0x110b – Shipment Receipt shipment_receipt_data_type

The Client to Server type definition for the shipment_request_data_type is shown below. This data type is only

supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 uchar_t8 driver_id[]; /* variable length, null terminated string, 40 bytes max */

 } shipment_request_data_type;

The driver_id is the login ID of the driver.

The Server to Client type definition for the shipment_response_data_type is shown below. This data type is only

supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 time_type shipment_timestamp;

 time_type start_time;

 time_type end_time;

 uchar_t8 shipper_name[]; /* 40 byte constant length, null-terminated string */

 uchar_t8 document_number[]; /* 40 byte constant length, null-terminated string */

 uchar_t8 commodity[]; /* 40 byte constant length, null-terminated string */

 uchar_t8 driver_id[]; /* 40 byte constant length, null-terminated string */

 uint8 result_code;

 } shipment_response_data_type;

The shipment_timestamp is the time that the shipment entry was created. The start_time and end_time are the times

that the shipment started being shipped and shipping was completed, respectively. The shipper_name is the name of

the shipping company. The document_number is the document number for the shipment. The commodity is the type

of commodity in the shipment.

The driver_id will be identical to the value received in the Shipment Request packet, and match the driver_id in the

driver’s profile. The result_code indicates whether or not the shipment data is valid.

Result Code (Decimal) Meaning

0 Contains Shipment Data

1 No Shipment Data

2 Unknown Driver ID

3 Unsupported Request

The Client to Server type definition for the shipment_receipt_data_type is shown below. This data type is only

supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 uchar_t8 driver_id[]; /* 40 byte constant length, null-terminated string */

 uint8 result_code;

 } shipment_receipt_data_type;

The driver_id will be identical to the value received in the Shipment Response packet. The result_code indicates

how the shipment data was handled by the Client.

Result Code (Decimal) Meaning

0 Success

1 Driver ID mismatch

2 Invalid value for Driver ID

3 Unexpected Packet

Need help? Email FleetSupport@garmin.com Page 104 001-00096-00 Rev. S

4 Shipment data rejected by Client

There can be more than one Shipment Response packet sent after a single Shipment Request is sent if there are

multiple shipments to be provided to the Client. After the Server receives a Shipment Receipt for the shipment sent,

it will send the next shipment until all have been sent. Once all shipments have been sent, the final Shipment

Response will indicate that there is no more Shipment Data by setting the result_code to 1. Shipments will only be

accepted by the Client following a Client Shipment Request or Client Shipment Receipt.

Note: Once the Server informs the Client no other Shipments are available, the Client will reject all additional

Shipment packets for that driver.

6.6.1.5 AOBRD Annotation Protocol

This protocol allows the Client to request a driver’s event Annotations (see Section 6.6.4.1.3.1) from the Server

during driver login, so the driver’s previously created Annotations are restored back into the Client. After driver

login, the Annotations can be observed on the Client. The Client will request this set of Annotations using the

packet sequence below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x110d – Annotation Request annotation_request_data_type

1..n-1 Server to Client 0x110e – Annotation Response annotation_response_data_type

2..n Client to Server 0x110f – Annotation Receipt annotation_receipt_data_type

Client to Server type definition for the annotation_request_data_type is shown below. This data type is only

supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 uchar_t8 driver_id[]; /* variable length, null terminated string, 40 bytes max */

 } annotation_request_data_type;

The driver_id is the login ID of the driver.

The Server to Client type definition for the annotation_response_data_type is shown below. This data type is only

supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 time_type comment_timestamp;

 time_type start_time;

 time_type end_time;

 uchar_t8 comment[]; /* 60 byte constant length, null terminated string */

 uchar_t8 driver_id[]; /* 40 byte constant length, null terminated string */

 uint8 result_code;

 } annotation_response_data_type;

The annotation_timestamp is the time that the Annotation entry was created. The start_time and end_time are the

times entered by the driver, respectively. The comment string is the contents of the Annotation data entered by the

driver. The result_code indicates whether or not Annotation data is included.

Result Code (Decimal) Meaning

0 Contains Annotation Data

1 No Annotation Data

Need help? Email FleetSupport@garmin.com Page 105 001-00096-00 Rev. S

Client to Server type definition for the annotation_receipt_data_type is shown below. This data type is only

supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 uchar_t8 driver_id[]; /* 40 byte constant length, null terminated string */

 uint8 result_code;

 } annotation_receipt_data_type;

The driver_id will be identical to the value received in the Annotation Response packet. The result_code indicates

how the Annotation data was handled by the Client.

Result Code (Decimal) Meaning

0 Success

1 Driver ID mismatch

2 Invalid value for Driver ID

3 Unexpected Packet

4 Annotation data rejected by Client

There can be more than one Annotation Response packet sent after a single Annotation Request is sent if there are

Annotations to be provided to the Client. After the Server receives an Annotation Receipt for an Annotation sent, it

will send the next Annotation until all have been sent.

Once all Annotations have been sent by the Server, the final Annotation Response will indicate that there is no more

Annotation Data by the Server setting the result_code to 1 “No Annotation Data”. Annotations will only be

accepted by the Client following a Client Annotation Request or Client Annotation Receipt.

Note: Once the Server informs the Client no other Annotations are available, the Client will reject all additional

Annotation packets for that driver.

6.6.2 AOBRD Driver Logout

The AOBRD Driver Logout protocols either indicate or initiate the logout of a specific driver on the Client.

Following a driver logout event, the Client deletes a driver’s AOBRD data. Driver logout can be achieved by any of

the three protocols listed in this section.

6.6.2.1 Driver Initiated Logout Protocol

This protocol notifies the Server a specific driver initiated a logout event on the Client by using the Client’s User

Interface.

Note: If the current driver’s duty status is not “OFF_DUTY” then a Duty Status Change is made by the Client to set

the driver to an” off-duty” state, which would generate an AOBRD status change event sent to the Server (see

Section 6.6.2.16.6.4.1.3.2).

Following a possible Client invoked status change (as noted above), an AOBRD Annotation event is sent to the

Server (see the AOBRD Annotation Event Section 6.6.4.1.3.1), which contains the Annotation text of “System

DETECTED Driver Logout”.

6.6.2.2 Server Initiated Logout Protocol

This protocol allows the Server to logout a specific driver on the Client, and the Client will then display a User

Interface message if the logout is successful. The Server Initiated Logout Protocol is shown below:

Need help? Email FleetSupport@garmin.com Page 106 001-00096-00 Rev. S

Note: If the current driver’s duty status is not “OFF_DUTY” then a Duty Status Change is made by the Client to set

the driver to an” off-duty” state, which would generate an AOBRD status change event sent to the Server (see

Section 6.6.4.1.3.26.6.4.1.3.2).

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1310 – Logout Driver logout_driver_data_type

1 Client to Server 0x1311 – Logout Driver Receipt logout_driver_receipt_data_type

The Server to Client type definition for the logout_driver_data_type is shown below. This data type is only

supported on Clients that report D615 as part of their protocol support data.

typedef struct /* D615 */

 {

 char driver_id[]; /* 40 byte constant length, null terminated string */

 } logout_driver_data_type;

The driver_id represents the driver the Server is requesting to logout the Client.

Client to Server receipt packet is sent back to the Server to indicate the result of the Server initiated logout request,

which is shown below:

typedef struct /* D615 */

 {

 char driver_id[]; /* 40 byte constant length, null terminated string */

 uint8 status; /* 0 = driver logged-out, 1 = driver NOT logged-out */

 uint8 result_code; /* See table below */

 } logout_driver_receipt_data_type;

The driver_id represents the driver the Server is requesting to logout the Client. The status indicates the current

“logged-off” state of the driver. The result_code indicates the end result of the Server request.

Result Code (Decimal) Meaning

0 Success

1 AOBRD not enabled error

2 No driver ID error

3 Driver not found error

All others Internal error

Following a possible Client invoked status change (as noted above), an AOBRD Annotation event is sent to the

Server (see the AOBRD Annotation Event Section 6.6.4.1.3.16.6.4.1.3.1), which contains the Annotation text of

“AOBRD Remote/Server Logoff Driver”.

6.6.2.3 Client System Initiated Logout Protocol

This protocol indicates a specific driver was forced to the logout state due to the Client receiving an Enable Fleet

Management protocol packet with the AOBRD feature bit set to the disable state (see Section 5.1.2).

Note: If the current driver’s duty status is not “OFF_DUTY” then a Duty Status Change is made by the Client to set

the driver to an” off-duty” state, which would generate an AOBRD status change event sent to the Server (see

Section 6.6.4.1.3.2).

Following a possible Client invoked status change (as noted above), an AOBRD Annotation event is then sent to the

Server (see the AOBRD Annotation Event Section 6.6.4.1.3.16.6.4.1.3.1), which contains the Annotation text of

“AOBRD disable FORCED Driver Logout”.

Need help? Email FleetSupport@garmin.com Page 107 001-00096-00 Rev. S

6.6.3 AOBRD Driver Profile Update Protocol

6.6.3.1 HOS_1.0 Driver Profile Update to Client (Property Carrying only)

This protocol allows the Server to provide an update to the profile information for a specified driver currently

“logged-in” on the Client. The packet sequence is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1105 – HOS_1.0 Driver Profile Update driver_profile_update_data_type

1 Client to Server 0x110c – (generic) Driver Profile Receipt driver_profile_update_receipt_data_type

The Server to Client type definition for the driver_profile_update_data_type is shown below. It contains the same

structure and members as the driver_profile_response_data_type used during driver login (see Section 6.6.1.2.1

6.6.1.2.1above). This data type is only supported on Clients that report D610 as part of their protocol support data.

Note: The driver name or driver ID will not be modified by a Driver Profile Update.

typedef struct /* D610 */

 {

 uint8 reserved[4]; /* Set to 0 */

 uchar_t8 first_name[]; /* 35 byte constant length, null terminated string */

 uchar_t8 last_name[]; /* 35 byte constant length, null terminated string */

 uchar_t8 driver_id[]; /* 40 byte constant length, null terminated string */

 uchar_t8 carrier_name[]; /* 120 byte constant length, null terminated string */

 uchar_t8 carrier_id[]; /* 8 byte constant length, null terminated string */

 uint8 rule_set;

 uint8 time_zone;

 uint8 reserved; /* Set to 0 */

 uint8 result_code;

 } driver_profile_update_data_type;

The first_name and last_name will be the driver’s first and last names, respectively. These values MUST match the

values provided in the original driver profile request. The driver_id will be identical to the value received in the

Driver Profile Response packet. The carrier_name is the name or trade name of the motor carrier company and

possibly the address of that company. The carrier_id is the USDOT number of the motor carrier.

The rule_set is the set of hours-of-service driving rules used by the driver. The time_zone is the time zone to use

when recording driver statuses. The result_code indicates whether or not driver profile being provided is valid. The

appropriate values for rule_set, time_zone, and result_code are defined in Section 6.6.1.2.16.6.1.2.1.

The Client to Server type definition for the driver_profile_receipt_data_type is shown below. This data type is only

supported on Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 uint8 result_code;

 uchar_t8 driver_id[]; /* variable length, null terminated string, 40 bytes max */

 } driver_profile_update_receipt_data_type;

The driver_id will be identical to the value received in the Profile Update request packet. The result_code indicates

how the profile data was handled by the Client.

Result Code (Decimal) Meaning

0 Success

1 Failed

Need help? Email FleetSupport@garmin.com Page 108 001-00096-00 Rev. S

2 Driver declined update

3 Busy, already processing a profile update

4 No driver id data in Server request

5 Storage error

6 Internal result error

7 Interface error

6.6.3.2 HOS_2.0 Driver Profile Update to Client (Property/Passenger

Carrying)

This protocol allows the Server to initiate a driver profile update for a specified driver that specified driver currently

“logged-in” on the Client. The Server has the option to either send this “HOS_2.0 Driver Profile” or the existing

HOS_1.0 driver profile format (which will not provide Passenger-carrying rule sets or Adverse Conditions

functionality). The packet sequence is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1110 – HOS_2.0 Driver Profile Update hos2_driver_profile_update_data_type

1 Client to Server 0x110c – (generic) Driver Profile Receipt driver_profile_update_receipt_data_type

Server to Client type definition for the hos2_driver_profile_update_data_type is shown below. This data type is

only supported on Clients that report D615 as part of their protocol support data.

typedef struct /* D615 */

 {

 char first_name[]; /* 35 byte constant length, null terminated string */

 char last_name[]; /* 35 byte constant length, null terminated string */

 char driver_id []; /* 40 byte constant length, null terminated string */

 char carrier_name[]; /* 120 byte constant length, null terminated string */

 char carrier_id[]; /* 8 byte constant length, null terminated string */

 uint8 long_term_rule_set; /* 0 = sixty-hour/7 day rule-set, */

 /* 1 = seventy-hour/8 day rule-set */

 uint8 load_type_rule_set; /* 0 = property-carrying vehicle, */

 /* 1 = passenger-carrying vehicle */

 date_time_t32 adverse_condition_time; /* Timestamp of Client reported Adverse Conditions */

 /* If no Timestamp exists, set to 0 */

 uint8 time_zone; /* See Time Zone table below */

 uint8 reserved; /* Set to 0 */

 uint8 result_code; /* See Result Code table below */

 } hos2_driver_profile_update_data_type;

The first_name and last_name will be the driver’s first and last names, respectively. These values MUST match the

values provided in the original driver profile request. The driver_id will be identical to the value received in the

Driver Profile Response packet.

The carrier_name is the name or trade name of the motor carrier company and possibly the address of that

company. The carrier_id is the USDOT number of the motor carrier.

The long_term_rule_set specifies the hours-of-services rules used by the driver. The long_term_rule_set is the set

of hours-of-service driving rules used by the driver. The load_type_rule_set specifies the type of load the driver is

carrying.

Need help? Email FleetSupport@garmin.com Page 109 001-00096-00 Rev. S

The adverse_condition_time reflects a Timestamp from a Client reported Adverse Conditions Annotation packet

described in Section 6.6.76.6.7. If the Server had not received an Adverse Conditions Annotation packet from the

Client for this driver, the Server should ensure this member value is set to ‘0’.

The time_zone is the time zone to use when recording driver statuses (see below).

Time Zone (Decimal) Meaning

0 Eastern Time Zone

1 Central Time Zone

2 Mountain Time Zone

3 Pacific Time Zone

4 Alaska Time Zone

5 Hawaii Time Zone

The result_code indicates whether or not driver profile being provided is a valid one (see below):

Result Code (Decimal) Meaning

0 Success

1 Unknown Driver ID

2 Error

Client to Server type definition for the driver_profile_update_receipt_data_type is shown below. This data type is

only supported on Clients that report D610 or D615 as part of their protocol support data.

typedef struct /* D610 or D615 */

 {

 uint8 result_code;

 uchar_t8 driver_id[]; /* variable length, null-terminated string, 40 bytes max */

 } driver_profile_update_receipt_data_type;

The driver_id will be identical to the value received in the Profile Update request packet. The result_code indicates

how the profile data was handled by the Client (see below):

Result Code (Decimal) Meaning

0 Success

1 Failed

2 Driver declined update

3 Busy, already processing a profile update

4 No driver id data in Server request

5 Storage error

6 Internal result error

7 Interface error

6.6.4 AOBRD Event Log Protocol

The event log protocol is used to synchronize changes in the driver’s status, or alert the Server of some driver

activity or system event. Several event types are sent to the Server, but only previous driver status change events are

sent back to the Client in the form of a bundled log.

Client event log data is placed into a single record and transferred to the Server using the File Transfer Protocols

described in Section 5.1.13.2.

Note: If the Client is unable to successfully transmit the driver’s AOBRD event log data to the Server, the Client will

buffer the event log data in protected memory. The Client can buffer up to 500 AOBRD event log packets.

Need help? Email FleetSupport@garmin.com Page 110 001-00096-00 Rev. S

6.6.4.1 Event Log Record Format

The event log record will contain a list of contiguous data sections. Each record will consist of the following three

sections: header, driver/truck data, and event specific data.

6.6.4.1.1 Event Header

The header is the set of fields describes what will be contained by the event. It indicates which driver/truck data

fields and what event specific data will be contained by this event. The header fields are defined below.

Byte

Number

Byte

Description

Notes

0-1 Version Version of the Event Log Protocol Format

2-5 Field Flags Bitmask specifying which fields in the driver/truck data and event data are present.

6-9 Reserved Reserved for Future Use

10 Event Type Identifies the Type of Event. The following are valid event values:

 0 = Annotation

 1 = Duty Status Change

 2 = Log Verified

 3 = Log Verification Error

 4 = New Shipment Added

 5 = Existing Shipment Modified

 6 = Device Failure Detected

 7 = Shipment Deleted

 8 = Previous Status Change Modified by System (Passenger Seat Exception)

 9 = New Status Change in Past by System (Passenger Seat Exception)

6.6.4.1.2 Driver/Truck Data

The driver/truck data is the set of data that can be included with any event. The Field Flags entry of the header

indicates which of the possible fields are included in this event. The data types for driver/truck data are time_type,

uint32, and char_string. The char_string data type is defined below.

typedef struct

 {

 uint8 size;

 uchar_t8 str[]; /* string with length defined by size field */

 } char_string;

The fields defined in the driver/truck data are defined below.

Flag Field

Bit

Data Type Name Description

0 time_type Timestamp The timestamp when this event occurred

1 char_string Driver First Name /* max chars = 35 */ First name of the driver for this event

2 char_string Driver Last Name /* max chars = 35 */ Last name of the driver for this event

3 char_string Driver ID /* max chars = 40 */ Driver Identifier for this event

4 char_string Co-Driver First Name /* max chars = 35 */ First name of the co-driver for this event

5 char_string Co-Driver Last Name /* max chars = 35 */ Last name of the co-driver for this event

6 char_string Co-Driver ID /* max chars = 40 */ ID of the co-driver for this event

7 char_string Tractor Number /* max chars = 10 */ Tractor number for this event

8 char_string Trailer Number /* max chars = 10 */ Trailer number for this event

9 char_string Tractor VIN /* max chars = 17 */ VIN of the tractor for this event

Need help? Email FleetSupport@garmin.com Page 111 001-00096-00 Rev. S

10 uint32 Odometer Reading Odometer reading when event occurred

11 char_string Carrier ID /* max chars = 8 */ USDOT number of the motor carrier

12 char_string Carrier Name /* max chars = 120 */ Name of the motor carrier company

13 char_string Nearest City Name /* max chars = 40 */ Nearest city when this event occurred

14 char_string Nearest State Name /* max chars = 2 */ Nearest state when this event occurred

6.6.4.1.3 Event Specific Data

The event specific data is the set of data provided based on the event type. Each event type has its own event

specific data. Like the driver/truck data, the Fields Flag entry of the header defines which of the event specific

fields is present in the event. The data types for event data are time_type, uint16, uint32, and the char_string data

type defined in the driver/truck data section.

6.6.4.1.3.1 Annotation (Event Type = 0)

Flag Field Bit Data Type Name Description

27 uint32 Start Timestamp Start of event

28 uint32 End Timestamp End of event

16 char_string Annotation Text /* max chars = 60 */ Text of the annotation

Annotation events can occur on the Client either when a driver enters annotation text while using the “View Log”

User Interface on a Client, or when invoked by the Server or Client systems. The hard-coded Server/Client system

annotation text string data is shown in the table below:

System generated Annotation Text Event that triggered Annotation to be sent

“Driver logged adverse conditions.” Driver clicked on “Log Adverse conditions”

“System modified driver status from ON-

DUTY to OFF-DUTY”

Client system determined sufficient time elapsed

to apply OFF-DUTY status due to Passenger Seat

“AOBRD disable FORCED Driver Logout” Server sent an FMI Enable Fleet Management

packet with AOBRD disabled

“AOBRD Remote/Server Logoff Driver” Client received a driver logout request for driver

“System DETECTED Driver Logout” Driver initiated logout on Client user interface

6.6.4.1.3.2 Duty Status Change (Event Type = 1)

Flag

Field Bit

Data Type Name Description

17 char_string Old Driver Status /* max chars = 3 */ Duty status of driver before the change

18 char_string New Driver Status /* max chars = 3 */ Duty status of driver after the change

19 uint32 Event ID Number Status change event counter

20 uint32 Latitude of Change Latitude when this change occurred

21 uint32 Longitude of Change Longitude when this change occurred

22 uint32 Verified Time Timestamp of Log Verified

29 uint8 Client Data 0 Data required for Client log entry

30 uint8 Client Data 1 Data required for Client log entry

The possible values for “Old Driver Status” and “New Driver Status” are shown below.

Status Code Meaning

OFF Off Duty

Need help? Email FleetSupport@garmin.com Page 112 001-00096-00 Rev. S

SB Sleeper Berth

D On Duty Driving

ON On-Duty Not Driving

6.6.4.1.3.3 Log Verified (Event Type = 2)

Flag Field Bit Data Type Name Description

23 time_type Original Timestamp The timestamp when the logs were verified

Note: Server action is required. For the Log Verified event, the Timestamp entry of the Driver/Truck data defined in

Section 6.6.4.1.2 6.6.4.1.2represents the time that a duty status change was verified. The Server can use the

Original Timestamp supplied in the Log Verified data to locate the previously reported duty status change.

The Verified Time of the status change can then be set to the Timestamp so that the event is correctly reported as

“Verified” when the logs are loaded onto the Client during login.

6.6.4.1.3.4 Log Verification Error (Event Type = 3)

Flag Field Bit Data Type Name Description

23 time_type Original Timestamp The timestamp when the logs failed verification

6.6.4.1.3.5 New Shipment Added (Event Type = 4)

Flag Field

Bit

Data Type Name Description

23 time_type Original Timestamp Time of event report

27 uint32 Start Timestamp Start time entered by driver

28 uint32 End Timestamp End time entered by driver

25 char_string Shipper Name /* max chars = 40 */ Name of shipping company

24 char_string Shipment Document Number /* max chars = 40 */ Document number of new

shipment

26 char_string Commodity /* max chars = 40 */ Type of commodity of

new shipment

6.6.4.1.3.6 Existing Shipment Modified (Event Type = 5)

Flag Field

Bit

Data Type Name Description

23 time_type Original Timestamp Time of event report

27 uint32 Start Timestamp Start time entered by driver

28 uint32 End Timestamp End time entered by driver

25 char_string Shipper Name /* max chars = 40 */ Name of shipping company

24 char_string Shipment Document Number /* max chars = 40 */ Document number of shipment

26 char_string Commodity /* max chars = 40 */ Type of commodity of shipment

6.6.4.1.3.7 Device Failure Detected (Event Type = 6)

Need help? Email FleetSupport@garmin.com Page 113 001-00096-00 Rev. S

Flag Field Bit Data Type Name Description

None uint16 Event Error Code Error Code of Failure

None time_type Event Error Time Timestamp of the failure

Event Error Code Type Description

0-3 Internal error Related to a software or hardware error condition that crashed the

Garmin. This error is usually reported after the Garmin crashes then

reboots and recovers.

4 Driver database error A driver’s database is determined to be corrupted. Drivers databases

are scanned for errors (e.g., missing records, corrupted records)

intervals and this error report would occur immediately when errors

are detected. An attempt to restore that database from the last known

good instance of that database.

5 Self-test error Recovery error from “Driver database error” listed above, and the

driver’s database could not be successfully restored, so there are now

database errors such as gaps (e.g., missing driver status change

records) in the status change database.

8 Power-up detected The HOS software module initializes.

9 Power-down detected The HOS software module is forced to shut-down.

10 Moving, no driver Truck has been moving more than 30 seconds with no driver in

“Driving” Duty Status. (Note: Not reported if Auto-Status Driver

Update feature is enabled.)

11 No GPS fix Current GPS fix does not match a valid map location. This could be

reported when a Driver Status Change is being processed, or during

the 15-minute driver status (e.g., Status Change to Server with old to

new status of Driving to Driving) report is done.

6.6.4.1.3.8 Shipment Deleted (Event Type = 7)

Flag Field Bit Data Type Name Description

23 time_type Original Timestamp Time of event

27 uint32 Start Timestamp Start time entered by driver

28 uint32 End Timestamp End time entered by driver

25 char_string Shipper Name /* max chars = 40 */ Name of shipping company

24 char_string Shipment Document Number /* max chars = 40 */ Document number of shipment

26 char_string Commodity /* max chars = 40 */ Type of commodity of shipment

6.6.4.1.3.9 Previous Duty Status Change Modified by System (Event Type = 8)

Flag

Field Bit

Data Type Name Description

17 char_string Old Driver Status /* max chars = 3 */ Duty status of driver before the change

Need help? Email FleetSupport@garmin.com Page 114 001-00096-00 Rev. S

18 char_string New Driver Status /* max chars = 3 */ Duty status of driver after the change

23 uint32 Original Timestamp Identifier of the status change event

29 uint8 Client Data 0 Data required for Client log entry

30 uint8 Client Data 1 Data required for Client log entry

6.6.4.1.3.10 New Duty Status Change in Past by System (Event Type = 9)

Flag Field

Bit

Data Type Name Description

17 char_string Old Driver Status /* max chars = 3 */ Duty status of driver before the change

18 char_string New Driver Status /* max chars = 3 */ Duty status of the driver after the change

23 uint32 Original Timestamp Identifier of the status change event

29 uint8 Client Data 0 Data required for Client log entry

30 uint8 Client Data 1 Data required for Client log entry

6.6.4.2 New Driver Event Log Record to Server

This protocol allows the Client to send a new driver event log record (shown in Section 6.6.4.16.6.4.1) to the Server.

Each record is sent to the Server when the event is detected by the Client.

If the Server cannot be reached then the Client queues each record in the order it occurred. Once Server

communication is re-established, each new driver event log record will be sent to the Server in the order as it

occurred.

The following are valid event types and event ID’s that can be sent to the Server:

 0 = Annotation

 1 = Duty Status Change

 2 = Log Verified

 3 = Log Verification Error

 4 = New Shipment Added

 5 = Existing Shipment Modified

 6 = Device Failure Detected

 7 = Shipment Deleted

 8 = Previous Status Change Modified by System (Passenger Seat Exception)

 9 = New Status Change in Past by System (Passenger Seat Exception)

The packet sequence of a Driver Event Log Record to Server is shown below:

N Direction Fleet Management Packet ID Hyper-

link

Fleet Management Packet

Data Type

0 Client to Server 0x0400 – File Transfer Start Packet ID 5.1.13.2.1 file_info_data_type

1 Server to Client 0x0403 – File Start Receipt Packet ID 5.1.13.2.2 file_receipt_data_type

2..n-3 Client to Server 0x0401 – File Data Packet ID 5.1.13.2.3 file_packet_data_type

3..n-2 Server to Client 0x0404 – Packet Receipt Packet ID 5.1.13.2.4 packet_receipt_data_type

n-1 Client to Server 0x0402 – File Transfer End Packet ID 5.1.13.2.5 file_end_data_type

n Server to Client 0x0405 – File End Receipt Packet ID 5.1.13.2.6 file_receipt_data_type

Need help? Email FleetSupport@garmin.com Page 115 001-00096-00 Rev. S

NOTE: The File Transfer is performed by the generic File Transfer in this document, and can be viewed by clicking

the hyperlinks above.

6.6.5 AOBRD Set Odometer Request

This protocol allows the Server to set the odometer value used by the Client. As the Client moves, it will add to the

odometer value set by the Server. Anytime the odometer is set by the Server, it will overwrite the previously set

odometer value.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1100 –Set Odometer Request set_odometer _request_data_type

The type definition for the set_odometer _request_data_type is shown below. This data type is only supported on

Clients that report D610 as part of their protocol support data.

typedef struct /* D610 */

 {

 uint32 odometer_value;

 } set_odometer_request_data_type;

The odometer_value is the value, in miles, to set as the odometer value.

6.6.6 Auto-Status Driver Update Protocol

The Auto-Status Driver Update feature has the ability to automatically change a driver’s status from “DRIVING” to

“ON-DUTY” when a Server programmed time (in seconds) has elapsed following the stop of the vehicle.

For a single driver, the driver’s status will change from “ON-DUTY” to “DRIVING” after 30-seconds of the vehicle

moving. If two drivers are logged-in and both are “ON-DUTY” then a User Interface message will be displayed

asking for one driver to select a “DRIVING” status. If any driver has “DRIVING” status, no action is needed or

performed.

This protocol allows the Server to enable/disable and program the “Auto-Status Driver Updates” functionality on the

Client for all drivers.

Scenario Single Driver on PND Two-Drivers on PND

Movement Driver in “On Duty” status will

automatically transition to “Driving”. If no

driver in “On Duty” status, PND will

prompt user to stop the truck and update

status.

Driver in “On Duty” status will automatically

transition to “Driving”. However, if both drivers

“On Duty” or no driver is “On Duty”, PND will

prompt user to stop the truck and update status.

No movement Driver in “Driving” status will

automatically transition to “On Duty”.

Driver is informed of the change in status

via a popup and will have the opportunity to

cancel the auto-status update

Driver in “Driving” status will automatically

transition to “On Duty” status. If a 2nd driver is in

“Passenger Seat”, this driver will also be moved

to “On Duty” status in order to comply with

FMCSA regulations. Driver(s) are informed of

the change in status via a popup and will have the

opportunity to cancel the auto-status update.

Note: This setting is a Client setting, which would affect all logged-in drivers on the Client. The default feature

state is “Disabled”, which will not perform Auto-Status feature functionality.

Need help? Email FleetSupport@garmin.com Page 116 001-00096-00 Rev. S

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1300 – Driver Auto Status auto_status_data_type

1 Client to Server 0x1301 – Driver Auto Status Receipt auto_status_receipt_data_type

Server to Client type definition for auto_status_data_type is shown below:

typedef struct /* D615 */

 {

 uint16 stop_moving_threshold; /* Stop moving threshold in seconds request */

 boolean enable; /* 0 = Disable, 1 = Enable feature */

 } auto_status_data_type;

Note: The minimum allowable threshold value is 60 seconds (e.g., 1 minute), and the maximum value is 900

seconds (e.g., 15 minutes). The Client will adjust the Server’s threshold value to stay within the minimum and

maximum limits. The Client’s actual settings will be sent back to the Server in the receipt packet.

The Client to Server type definition for auto_status_receipt_data_type is shown below:

typedef struct /* D615 */

 {

 uint16 stop_moving_threshold; /* Stop moving threshold in seconds result */

 boolean enable; /* 0 = Disable, 1 = Enabled feature */

 uint8 result_code; /* Result code from Client */

 } auto_status_receipt_data_type;

Result Code (Decimal) Meaning

0 Success

1 Threshold too low, so now set to “60”

2 Threshold too high, so now set to “900”

255 Internal error

6.6.7 Adverse Driving Conditions Exemption Protocol

The driver will be given the ability to declare Adverse Driving Conditions, which will allow an additional 2-hour

driving exemption (if the extension does not violate the short-term ON_DUTY limit).

Once the driver successfully declares the Adverse Conditions (by clicking on the User Interface button), a Client

generated Annotation will automatically be sent to the Server, and the Client’s violation detection logic will then

permit a 2-hour extension to driving time for this driving period.

When the Server receives a driver’s Adverse Driving Conditions Annotation, the Server should then adjust its rules

engine to account for the time extension, and save the Start_Timestamp from the received Annotation.

Note: This Start_Timestamp value should then be sent to the Client during any subsequent D615

Property/Passenger Driver Logins (see Section 6.6.1.2.26.6.1.2.2) or Driver Profile Updates (see Section

6.6.36.6.3) sent from the Server if the Adverse Driving Conditions exemption is intended to be used later on the

Client. See the complete Annotation packet format in the Garmin Fleet Management Interface Control

Specification.

 Annotation Type: Adverse Conditions (Event Log Type = 0)

Flag Field Bit Data Type Name Description

27 uint32 Start Timestamp Time of Adverse Conditions logged

28 uint32 End Timestamp Time of Adverse Conditions logged

16 char_string Annotation Text Text = "Driver logged adverse conditions."

Need help? Email FleetSupport@garmin.com Page 117 001-00096-00 Rev. S

6.6.8 Driver 8-Hour Rule Enable Protocol

This protocol allows the Server to enable or disable the FMCSA 8-Hour Rule functionality of the Client’s violation

detector. The 8-Hour Rule enforces a 30-minute rest period after 8-hours of driving.

Note: This rule only applies to “Property Carrying” vehicles.

Note: This setting is a Client setting, which would affect all logged-in drivers on the Client. The default feature

state is “Enabled”, which would enforce the 8-Hour Rule.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1312 – 8-Hour Rule Exemption Enable eight_hour_exemption_enable_data_type

1 Client to Server 0x1313 – 8-Hour Rule Exemption Enable Receipt eight_hour_exemption_enable_data_type

The Server to Client type definition for the eight_hour_exemption_enable_data_type is shown below. This data

type is only supported on Clients that report D615 as part of their protocol support data.

typedef struct /* D615 */
 {
 boolean new_state; /* 0 = Disable, 1 = Enable 8-Hour Rule Exemption (default state) */
 } eight_hour_exemption_enable_data_type;

A Client to Server receipt packet to indicate the success of enabling/disabling of the 8-HourRule Exemption

functionality will be returned back to the Server using the same eight_hour_exemption_enable_data_type shown

above.

6.6.9 IFTA File Protocols

6.6.9.1 IFTA File Request Protocol

This protocol allows the Server to request driver exported IFTA CSV files stored on the Client. File selection will

be based on driver export timestamps, which are created when a driver clicks the IFTA “Export” User Interface

button. Once the Server issues this protocol request, the Client locates one or more CSV files. The files will be

concatenated into one CSV file. This single file then gets compressed using the GZIP compression algorithm.

Next the Client initiates a File Transfer to the Server using a newly created IFTA File Type (File Type = 4), which

transfers the GZIP file to the Server. After the IFTA CSV file transfer process completes, the Client sends a final

IFTA file result packet.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0006 – IFTA File Request ifta_file_request_data_type

The Server to Client IFTA File Request initial file request is shown below:

typedef struct /* D615 */

 {

 date_time_t32 start_time; /* Timestamp for start of range */

 date_time_t32 end_time; /* Timestamp for end of range */

 } ifta_file_request_data_type;

Client to Server File Transfer process occurs next, the File Transfer Protocol packet sequence is listed below as

three distinct transfer stages. The first stage initiates the file transfer process:

N Direction Fleet Management Packet ID Hyper- Fleet Management

Need help? Email FleetSupport@garmin.com Page 118 001-00096-00 Rev. S

link Packet Data Type

0 Client to Server 0x0400 – File Transfer Start Packet ID 5.1.13.2.1 file_info_data_type

1 Server to Client 0x0403 – File Start Receipt Packet ID 5.1.13.2.2 file_receipt_data_type

…next, repeat the following Server and Client data stage until all data is sent:

2..n-

3

Client to

Server

0x0401 – File Data Packet ID 5.1.13.2.3 file_packet_data_type

3..n-

2

Server to

Client

0x0404 – Packet Receipt Packet ID 5.1.13.2.4 packet_receipt_data_type

…all file data was sent, so end the file transfer sequence as shown below, which ends the File Transfer process:

n-1 Client to

Server

0x0402 – File Transfer End Packet ID 5.1.13.2.5 file_end_data_type

n Server to

Client

0x0405 – File End Receipt Packet ID 5.1.13.2.6 file_receipt_data_type

The final Client to Server IFTA file result response (sent after the File Transfer completes) is shown below:

1 Client to Server 0x0007 – IFTA File Receipt ifta_file_response_data_type

typedef struct /* D615 */

 {

 uint8 result_code; /* 0 = No errors, non-zero value for errors */

 } ifta_file_response_data_type;

Result Code (Decimal) Meaning

0 Success

1 No IFTA CSV files found

2 Processing busy, try again later

24 Unable to open IFTA directory

All others Internal error, try again later

6.6.9.2 IFTA File Delete Protocol

This protocol allows the Server to delete driver exported IFTA CSV files on the Client. The selected files will be

based on a range of dates from the Server.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0008 – IFTA Delete File Request ifta_file_request_data_type

1 Client to Server 0x0009 – IFTA Delete File Receipt ifta_file_response_data_type

Server to Client IFTA File Delete Request packet is shown below:

typedef struct /* D615 */

 {

 date_time_t32 start_time; /* Timestamp for start of range */

 date_time_t32 end_time; /* Timestamp for end of range */

 } ifta_file_request_data_type;

Client to Server IFTA File Delete Receipt packet is shown below:

Need help? Email FleetSupport@garmin.com Page 119 001-00096-00 Rev. S

typedef struct /* D615 */

 {

 uint8 result_code; /* 0 = No errors, non-zero value for errors */

 } ifta_file_response_data_type;

Result Code (Decimal) Meaning

0 Success

1 No IFTA CSV files found

2 Processing busy, try again later

24 Unable to open IFTA directory

All others Internal error, try again later

6.6.10 HOS Settings Protocol

This protocol allows the Server to set specific HOS Settings by using one generic FMI Packet ID and one setting

structure. The Server selects a HOS Setting (from a published list shown below) and programs the Client’s HOS

setting with a data value. Each listed HOS Setting can also be enabled or disabled with this generic setting structure.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1500 – HOS Setting hos_settings_data_type

1 Client to Server 0x1501 – HOS Setting Receipt hos_settings_receipt_data_type

Server to Client HOS Settings Protocol packet is shown below:

typedef struct /* D619 */

 {

 uint16 setting_selector; /* HOS Setting Selector (see list below) */

 uint16 settings_value; /* Data value if applicable for data setting */

 boolean enable_state; /* 0 = disable, 1 = enable feature */

 } hos_settings_data_type;

Client to Server HOS Settings Protocol Receipt packet is shown below:

typedef struct /* D619 */

 {

 uint16 setting_selector; /* HOS Setting Selector from Server */

 uint16 settings_value; /* New HOS Setting value found on Client */

 boolean enable_state; /* New feature state, 0 = disabled, 1 = enabled */

 uint8 result_code; /* Result code from Client */

 } hos_settings_receipt_data_type;

Each setting is shown in the table below, and then described in a dedicated sub-section below.

Setting Name Setting

Selector

Hyperlink Description

Auto-Status Driver Update 0 Section

6.6.10.1

Enable/Disable with elapsed time to determine Auto

Driver Status

Driver 8-Hour Rule 1 Section

6.6.10.2

Enable/Disable for FMCSA 8-Hour Rule

Periodic Driver Status 2 Section

6.6.10.3

Enable/Disable with elapsed time for Driver Status

Start Time of Day 3 Section

6.6.10.4

Server selected Start Time of Day for HOS

Need help? Email FleetSupport@garmin.com Page 120 001-00096-00 Rev. S

6.6.10.1 A619 Auto-Status Driver Update

The Auto-Status Driver Update feature has the ability to automatically change a driver’s status from “DRIVING” to

“ON-DUTY” when a Server programmed time (in seconds) has elapsed following the stop of the vehicle.

This same functionality is available with a previously released FMI protocol named “Auto-Status Driver

Update Protocol” as described in Section 6.6.66.6.6.

For a single driver, the driver’s status will change from “ON-DUTY” to “DRIVING” after 30-seconds of the vehicle

moving. If two drivers are logged-in and both are “ON-DUTY” then a User Interface message will be displayed

asking for one driver to select a “DRIVING” status. If any driver has “DRIVING” status, no action is needed or

performed.

This protocol allows the Server to enable/disable and program the “Auto-Status Driver Updates” functionality on the

Client for all drivers.

Scenario Single Driver on Client’s User Interface Two-Drivers on Client’s User Interface

Movement Driver in “On Duty” status will

automatically transition to “Driving”. If no

driver in “On Duty” status, Client’s User

Interface will prompt user to stop the truck

and update status.

Driver in “On Duty” status will automatically

transition to “Driving”. However, if both drivers

“On Duty” or no driver is “On Duty”, Client’s

User Interface will prompt user to stop the truck

and update status.

No movement Driver in “Driving” status will

automatically transition to “On Duty”.

Driver is informed of the change in status

via a popup and will have the opportunity to

cancel the auto-status update

Driver in “Driving” status will automatically

transition to “On Duty” status. If a 2nd driver is in

“Passenger Seat”, this driver will also be moved

to “On Duty” status in order to comply with

FMCSA regulations. Driver(s) are informed of

the change in status via a popup and will have the

opportunity to cancel the auto-status update.

Note: This setting is a Client setting, which would affect all logged-in drivers on the Client. The default feature

state is “Disabled”, which will not perform Auto-Status feature functionality.

Note: The minimum allowable threshold value is 60 seconds (e.g., 1 minute), and the maximum value is 900

seconds (e.g., 15 minutes). The Client will adjust the Server’s threshold value to stay within the minimum and

maximum limits. The Client’s actual settings will be sent back to the Server in the receipt packet.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1500 – HOS Setting hos_settings_data_type

1 Client to Server 0x1501 – HOS Setting Receipt hos_settings_receipt_data_type

Server to Client HOS Settings Protocol packet for “Auto-Status Driver Updates” is shown below:

typedef struct /* D619 */

 {

 uint16 setting_selector; /* 0 = Auto-Status Driver Update */

 uint16 settings_value; /* 60 to 900 (seconds) */

 boolean enable_state; /* 0 = disable, 1 = enable feature */

 } hos_settings_data_type;

Client to Server HOS Settings Protocol Receipt for “Auto-Status Driver Updates” is shown below:

Need help? Email FleetSupport@garmin.com Page 121 001-00096-00 Rev. S

typedef struct /* D619 */

 {

 uint16 setting_selector; /* 0 = Auto-Status Driver Update */

 uint16 settings_value; /* Value of setting saved in seconds */

 boolean enable_state; /* Current feature state, 0 = disabled, 1 = enabled */

 uint8 result_code; /* Result code from Client */

 } hos_settings_receipt_data_type;

Result Code (Decimal) Meaning

0 Success

1 Threshold too low, so now set to “60”

2 Threshold too high, so now set to “900”

255 Internal error

Go to HOS Settings selection table, click here> 6.6.106.6.10

6.6.10.2 A619 Driver 8-Hour Rule Enable

This protocol allows the Server to enable or disable the FMCSA 8-Hour Rule functionality of the Client’s violation

detector. The 8-Hour Rule enforces a 30-minute rest period after 8-hours of driving.

This same functionality is available with a previously released FMI protocol named “Driver 8-Hour Rule

Enable Protocol” as described in Section 6.6.86.6.8.

Note: This rule only applies to “Property Carrying” vehicles.

Note: This setting is a Client setting, which would affect all logged-in drivers on the Client. The default feature

state is “Enabled” and would enforce the 8-Hour Rule.

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x1500 – HOS Setting hos_settings_data_type

1 Client to Server 0x1501 – HOS Setting Receipt hos_settings_receipt_data_type

Server to Client HOS Settings Protocol packet for “Driver 8-Hour Rule Enable” is shown below:

typedef struct /* D619 */

 {

 uint16 setting_selector; /* 1 = Driver 8-Hour Rule Enable */

 uint16 reserved; /* Unused */

 boolean enable_state; /* 0 = disable, 1 = enable feature */

 } hos_settings_data_type;

Client to Server HOS Settings Protocol Receipt packet for “Driver 8-Hour Rule Enable” is shown below:

typedef struct /* D619 */

 {

 uint16 setting_selector; /* 1 = Driver 8-Hour Rule Enable */

 uint16 Reserved; /* Unused */

 boolean enable_state; /* Current feature state, 0 = disabled, 1 = enabled */

 uint8 result_code; /* Result code from Client */

 } hos_settings_receipt_data_type;

Result Code (Decimal) Meaning

0 Success

255 Internal error

Go to HOS Settings selection table, click here>6.6.106.6.10

Need help? Email FleetSupport@garmin.com Page 122 001-00096-00 Rev. S

6.6.10.3 A619 Periodic Driver Status

This protocol allows the Server to enable, disable or modify the Client’s report frequency of the Driver’s current

Status. The default setting of this reporting mechanism is “Enabled”.

Note: This setting is a Client setting, which would affect all logged-in drivers on the Client. The default feature

state is “Enabled” with a “900 second” (15-minute) setting value.

Default Setting State Default Setting Value

Enabled 900 seconds (15 minutes)

Server to Client HOS Settings Protocol packet for “Periodic Driver Status” is shown below:

typedef struct /* D619 */

 {

 uint16 setting_selector; /* 2 = Periodic Driver Status */

 uint16 settings_value; /* 60 to 65,535 (seconds) */

 boolean enable_state; /* 0 = disable, 1 = enable feature */

 } hos_settings_data_type;

Client to Server HOS Settings Protocol Receipt packet for “Periodic Driver Status” is shown below:

typedef struct /* D619 */

 {

 uint16 setting_selector; /* 2 = Periodic Driver Status */

 uint16 settings_value; /* Value of setting saved in seconds */

 boolean enable_state; /* Current feature state, 0 = disabled, 1 = enabled */

 uint8 result_code; /* 0 = Success */

 } hos_settings_receipt_data_type;

Result Code (Decimal) Meaning

0 Success

1 Threshold too low, so now set to “60”

2 Threshold too high, so now set to “65,535”

255 Internal error

Go to HOS Settings selection table, click here> 6.6.106.6.10

6.6.10.4 A620 Start Time of Day

This protocol allows the Server to determine the Start Time of Day for a weekly HOS Start Time reset. The setting

value represents the number of minutes after 12:00 am (based on the time zone setting of driver’s profile).

Note: This setting is a Client setting, which would affect all logged-in drivers on the Client.

Note: This HOS feature setting is permanently enabled, and cannot be disabled.

The default or minimum setting will be “0” minutes after midnight. And the maximum setting value in minutes is

“1439” (decimal), which represents 11:59 pm.

Value (Decimal) Meaning

0 (Default) 12:00 am

1,439 (Maximum) 11:59 pm

Server to Client HOS Settings Protocol packet for “Start Time of Day” is shown below:

typedef struct /* D619 */

 {

Need help? Email FleetSupport@garmin.com Page 123 001-00096-00 Rev. S

 uint16 setting_selector; /* 3 = Start time of Day */

 uint16 settings_value; /* 0 to 1,439 (seconds) */

 boolean enable_state; /* 0 = disable, 1 = enable feature */

 } hos_settings_data_type;

Client to Server HOS Settings Protocol Receipt packet for “Start Time of Day” is shown below:

typedef struct /* D619 */

 {

 uint16 setting_selector; /* 3 = Start time of Day */

 uint16 settings_value; /* Value of setting saved in seconds */

 boolean enable_state; /* Current feature state, 0 = disabled, 1 = enabled */

 uint8 result_code; /* 0 = Success */

Go to HOS Settings selection table, click here> 6.6.106.6.10

6.7 Deprecated Protocols

The following protocols are deprecated, and may no longer be supported in the future. It is highly recommended

that other existing protocols be used for new development, as they provide functionality equivalent to or better than

the protocols in this section.

6.7.1 Text Message Protocols (Deprecated)

6.7.1.1 A603 Client to Server Open Text Message Protocol (Deprecated)

This text message protocol is used to send a simple text message from the Client to the Server. When the Server

receives this message, it is required to send a message receipt back to the Client. This protocol is only supported on

Clients that report A603 as part of their protocol support data. The packet sequence for the Client to Server open

text message is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x0024 – Client to Server Open Text

Message Packet ID

client_to_server_open_text_msg_data_type

1 Server to Client 0x0025 – Client to Server Text Message

Receipt Packet ID

client_to_server_text_msg_receipt_data_type

The type definition for the client_to_server_open_text_msg_data_type is shown below. This data type is only

supported on Clients that report D603 as part of their protocol support data.

typedef struct /* D603 */

 {

 time_type origination_time;

 uint32 unique_id;

 uchar_t8 text_message[]; /* variable length, null-terminated string, 200 bytes max */

 } client_to_server_open_text_msg_data_type;

The origination_time is the time that the text message was sent from the Client. The unique_id is the unsigned 32-

bit unique identifier for the message.

The type definition for the client_to_server_text_msg_receipt_data_type is shown below. This data type is only

supported on Clients that report D603 as part of their protocol support data.

Need help? Email FleetSupport@garmin.com Page 124 001-00096-00 Rev. S

typedef struct /* D603 */

 {

 uint32 unique_id;

 } client_to_server_text_msg_receipt_data_type;

The unique_id is the unsigned 32-bit unique identifier for the message that the Client sent to the Server.

6.7.1.2 A602 Server to Client Open Text Message Protocol (Deprecated)

This text message protocol is used to send a simple text message from the Server to the Client. When the Client

receives this message, it will notify the user and allow the message to be displayed. No additional action will be

required from the Client after receiving the text message. This protocol is only supported on Clients that report

A602 as part of their protocol support data.

This protocol does not have the capability to report the text message status back to the Server. So, it is

recommended you use the A604 Server to Client Open Text Message Protocol if a Client supports both A602 and

A604. The packet sequence for the Server to Client open text message is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to

Client

0x0021 – Server to Client Open Text

Message Packet ID

A602_server_to_client_open_text_msg_data_type

The type definition for the A602_server_to_client_open_text_msg_data_type is shown below. This data type is only

supported on Clients that report D602 as part of their protocol support data.

typedef struct /* D602 */

 {

 time_type origination_time;

 uchar_t8 text_message[]; /* variable length, null-terminated string, 200 bytes max */

 } A602_server_to_client_open_text_msg_data_type;

The origination_time is the time that the text message was sent from the Server.

6.7.1.3 Server to Client Simple Okay Acknowledgement Text Message

Protocol (Deprecated)

This text message protocol is used to send a simple okay acknowledgement text message from the Server to the

Client. When the Client receives this message, it will notify the user and allow the message to be displayed. When

the message is displayed, the Client will also display an “Okay” button that the user is required to press after reading

the text message.

Once the “Okay” button is pressed, the Client will send an “Okay” acknowledgement message to the Server. This

protocol is only supported on Clients that report A602 as part of their protocol support data. The packet sequence

for the Server to Client simple okay acknowledgement text message is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to

Client

0x0022 – Server to Client Simple Okay

Acknowledgment Text Message Packet ID

server_to_client_ack_text_msg_data_type

1 Client to

Server

0x0020 – Text message Acknowledgment Packet

ID

text_msg_ack_data_type

The type definition for the server_to_client_ack_text_msg_data_type is shown below. This data type is only

supported on Clients that report D602 as part of their protocol support data.

Need help? Email FleetSupport@garmin.com Page 125 001-00096-00 Rev. S

typedef struct /* D602 */

 {

 time_type origination_time;

 uint8 id_size;

 uint8 reserved[3]; /* set to 0 */

 uint8 id[]; /* 16 bytes length */

 uchar_t8 text_message[]; /* variable length, null-terminated string, 200 bytes max */

 } server_to_client_ack_text_msg_data_type;

The origination_time is the time that the text message was sent from the Server. The id_size determines the number

of characters used in the id member. An id size of zero indicates that there is no message id. The id member is an

array of 8-bit integers that could represent any type of data.

The type definition for the text_msg_ack_data_type is shown below. This data type is only supported on Clients

that report D602 as part of their protocol support data.

typedef struct /* D602 */

 {

 time_type origination_time;

 uint8 id_size;

 uint8 reserved[3]; /* set to 0 */

 uint8 id[]; /* 16 bytes length */

 uint32 msg_ack_type

 } text_msg_ack_data_type;

The origination_time is the time that the text message was acknowledged on the Client. The id_size and id will

match the id_size and id of the applicable text message. The msg_ack_type will depend on the type of text message

being acknowledged. The table below defines the different values for msg_ack_type.

Value (Decimal) Acknowledgment Type

0 Simple Okay Acknowledgement

1 Yes Acknowledgment

2 No Acknowledgment

6.7.1.4 Server to Client Yes/No Confirmation Text Message Protocol

(Deprecated)

This text message protocol is used to send a Yes/No confirmation text message from the Server to the Client. When

the Client receives this message, it will notify the user and allow the message to be displayed. When the message is

displayed, the Client will also display two buttons (Yes and No). The user is required to press one of the two

buttons after reading the text message. Once the user presses one of the two buttons, the Client will send an

acknowledgement message to the Server.

This protocol is only supported on Clients that report A602 as part of their protocol support data. The packet

sequence for the Server to Client Yes/No confirmation text message is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to

Client

0x0023 – Server to Client Yes/No Confirmation

Text Message Packet ID

server_to_client_ack_text_msg_data_type

1 Client to

Server

0x0020 – Text message Acknowledgment Packet

ID

text_msg_ack_data_type

The type definition for the server_to_client_ack_text_msg_data_type is shown below. This data type is only

supported on Clients that report D602 as part of their protocol support data.

Need help? Email FleetSupport@garmin.com Page 126 001-00096-00 Rev. S

typedef struct /* D602 */

 {

 time_type origination_time;

 uint8 id_size;

 uint8 reserved[3]; /* set to 0 */

 uint8 id[]; /* 16 bytes length */

 uchar_t8 text_message[]; /* variable length, null-terminated string, 200 bytes max */

 } server_to_client_ack_text_msg_data_type;

The origination_time is the time that the text message was sent from the Server. The id_size determines the number

of characters used in the id member. An id size of zero indicates that there is no message id. The id member is an

array of 8-bit integers that could represent any type of data.

6.7.1.5 StreetPilot Text Message Protocol (Deprecated)

This Protocol was developed on the StreetPilot 3 and StreetPilot 2610\2620 to allow the Server to send a simple text

message to the Client. Garmin products which do not report A607 or higher as part of their protocols support data

will continue to support this protocol if the Server chooses to use it. Unlike the text message protocols described in

Section 5.1.5, the Client is not required to have fleet management enabled (See Section 5.1.2) to receive text

messages using this protocol.

When the Client receives this message, it will display the text message to the user. The message is removed from

the Client once the user is done reviewing it. The packet sequence for the Legacy text message is shown below:

N Direction Packet ID Data Type

0 Server to Client 136 – Legacy Text Message Packet ID legacy_text_msg_type

The type definition for the legacy_text_msg_type is shown below.

typedef struct

 {

 char message[]; /* variable length, null-terminated string, 200 characters max */

 } legacy_text_msg_type;

6.7.2 Driver ID Monitoring Protocols (Deprecated)

The following driver ID protocols are deprecated. Although they will continue to be supported on Client devices, it

is highly recommended that the protocols described in Section 5.1.12.1 be used for new development, as they

provide functionality equivalent to or better than the protocols in this section.

6.7.2.1 A604 Server to Client Driver ID Update Protocol (Deprecated)

The A604 Server to Client Driver ID Update Protocol is used to change the driver ID of the current driver on the

Client device. This protocol is only supported on Clients that report A604 as part of their protocol support data.

The packet sequence for the A604 Server to Client Driver ID Update Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0811 – Server to Client Driver ID Update

Packet ID

driver_id_data_type

1 Client to Server 0x0812 – Driver ID Receipt Packet ID driver_id_receipt_data_type

The type definition for the driver_id_data_type is shown below. This data type is only supported on Clients that

include D604 in their protocol support data.

Need help? Email FleetSupport@garmin.com Page 127 001-00096-00 Rev. S

typedef struct

 {

 uint32 status_change_id;

 time_type status_change_time; /* timestamp of status change */

 uchar_t8 driver_id[]; /* variable length, null terminated string, 50 bytes max */

 } driver_id_data_type;

The status_change_id is a unique number used to identify this status change request. The status_change_time is the

timestamp when the specified driver ID took effect.

The type definition for the driver_id_receipt_data_type is shown below. This data type is only supported on Clients

that include D604 in their protocol support data.

typedef struct

 {

 uint32 status_change_id;

 boolean result_code;

 uint8 reserved[3]; /* Set to 0 */

 } driver_id_receipt_data_type;

The status_change_id identifies the driver ID update being acknowledged. The result_code indicates whether the

update was successful. This will be true if the update was successful or false otherwise.

6.7.2.2 A604 Client to Server Driver ID Update Protocol (Deprecated)

The A604 Client to Server Driver ID Update Protocol is used to notify the Server when the driver changes the driver

ID via the user interface on the Client. This protocol is only supported on Clients that report A604 as part of their

protocol support data. The packet sequence for the A604 Client to Server Driver ID Update Protocol is shown

below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x0811 –Client to Server Driver ID Update

Packet ID

driver_id_data_type

1 Server to Client 0x0812 – Driver ID Receipt Packet ID driver_id_receipt_data_type

The type definitions for the driver_id_data_type and driver_id_receipt_data_type are described in Section

6.7.2.16.7.2.1. These data types are only supported on Clients that include D604 in their protocol support data.

6.7.2.3 A604 Server to Client Driver ID Request Protocol (Deprecated)

The Server to Client Driver ID Request Protocol is used by the Server to obtain the driver ID currently stored in the

device. If no driver ID has been set, a zero length string will be returned in the driver_id_data_type. This protocol

is only supported on Clients that report A604 as part of their protocol support data. The packet sequence for the

Server to Client Driver ID Request Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0810 – Request Driver ID Packet ID None

1 Client to Server 0x0811 – Client to Server Driver ID

Update Packet ID

driver_id_data_type

2 Server to Client 0x0812 – Driver ID Receipt Packet ID driver_id_receipt_data_type

The type definitions for the driver_id_data_type and driver_id_receipt_data_type are described in Section

6.7.2.16.7.2.1. These data types are only supported on Clients that include D604 in their protocol support data.

Need help? Email FleetSupport@garmin.com Page 128 001-00096-00 Rev. S

6.7.3 Driver Status Monitoring Protocols (Deprecated)

The following driver status protocols are deprecated. Although they will continue to be supported on Client devices,

it is highly recommended that the protocols described in Section 5.1.12.3 be used for new development, as they

provide functionality equivalent to or better than the protocols in this section.

6.7.3.1 A604 Server to Client Driver Status Update Protocol (Deprecated)

The Server to Client Driver Status Update Protocol is used to change the status of the current driver on the Client

device. This protocol is only supported on Clients that report A604 as part of their protocol support data. The

packet sequence for the Server to Client Driver Status Update Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0821 – Server to Client Driver Status

Update Packet ID

driver_status_data_type

1 Client to Server 0x0822 – Driver Status Receipt Packet ID driver_status_receipt_data_type

The type definition for the driver_status_data_type is shown below. This data type is only supported on Clients that

include D604 in their protocol support data.

typedef struct

 {

 uint32 status_change_id; /* unique identifier */

 time_type status_change_time; /* timestamp of status change */

 uint32 driver_status; /* ID corresponding to the new driver status */

 } driver_status_data_type;

The status_change_id is a unique number which identifies this status update message. The status_change_time is

the timestamp when the specified driver status took effect.

The type definition for the driver_status_receipt_data_type is shown below. This data type is only supported on

Clients that include D604 in their protocol support data.

typedef struct

 {

 uint32 status_change_id; /* timestamp of status change */

 boolean result_code;

 uint8 reserved[3] /* Set to 0 */

 } driver_status_receipt_data_type;

The status_change_id identifies the status update being acknowledged. The result_code indicates whether the

update was successful. This will be true if the update was successful or false otherwise (for example, the

driver_status is not on the Client).

6.7.3.2 A604 Client to Server Driver Status Update Protocol (Deprecated)

The Client to Server Driver Status Update Protocol is used to notify the Server when the driver changes the driver

status via the user interface on the Client. This protocol is only supported on Clients that report A604 as part of

their protocol support data. The packet sequence for the Client to Server Driver Status Update Protocol is shown

below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Client to Server 0x0821 – Client to Server Driver Status Update

Packet ID

driver_status_data_type

1 Server to Client 0x0822 – Driver Status Receipt Packet ID driver_status_receipt_data_type

The type definitions for the driver_status_data_type and driver_status_receipt_data_type are described in Section

6.7.3.16.7.3.1. These data types are only supported on Clients that include D604 in their protocol support data.

Need help? Email FleetSupport@garmin.com Page 129 001-00096-00 Rev. S

6.7.3.3 A604 Server to Client Driver Status Request Protocol (Deprecated)

The Server to Client Driver Status Request Protocol is used by the Server to obtain the driver status currently stored

in the device. If no driver status has been set, an ID of 0xFFFFFFFF will be returned as the driver status. This

protocol is only supported on Clients that report A604 as part of their protocol support data. The packet sequence

for the Server to Client Driver Status Request Protocol is shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0820 – Request Driver Status Packet ID None

1 Client to Server 0x0821 – Client to Server Driver Status Update

Packet ID

driver_status_data_type

2 Server to Client 0x0822 – Driver Status Receipt Packet ID driver_status_receipt_data_type

The type definitions for the driver_status_data_type and driver_status_receipt_data_type are described in Section

6.7.3.16.7.3.1. These data types are only supported on Clients that include D604 in their protocol support data.

6.7.4 Stop Message Protocols (Deprecated)

6.7.4.1 A602 Stop Protocol (Deprecated)

This protocol is used to send Stops or destinations from the Server to the Client. When the Client receives a Stop, it

will display it to the user and give the user the ability to start navigating to the Stop location. The Client will not

report Stop status (unread, read, active…) for Stops it received using this protocol. This protocol is only supported

on Clients that report A602 as part of their protocol support data. The packet sequence for the A602 Stop protocol is

shown below:

N Direction Fleet Management Packet ID Fleet Management Packet Data Type

0 Server to Client 0x0100 – A602 Stop Protocol Packet ID A602_stop_data_type

The type definition for the A602_stop_data_type is shown below. This data type is only supported on Clients that

report D602 as part of their protocol support data.

typedef struct /* D602 */

 {

 time_type origination_time;

 sc_position_type stop_position;

 uchar_t8 text[]; /* variable length, null-terminated string, 51 bytes max */

 } A602_stop_data_type;

The origination_time is the time that the Stop was sent from the Server. The stop_position is the location of the

Stop. The text member contains the text that will be displayed on the Client’s user interface for this Stop.

6.7.4.2 StreetPilot Stop Message Protocol (Deprecated)

This Protocol was developed on the StreetPilot 3 and StreetPilot 2610\2620 to allow the Server to send Stop or

destination messages to the Client. Garmin devices which do not report A607 or higher as part of their protocols

support data will continue to support this protocol if the Server chooses to use it. Unlike the Stop protocols

described in Section 5.1.5.7, the Client is not required to have fleet management enabled (See Section 5.1.2) to

receive Stops using this protocol. When the Client receives a Stop, it will display the Stop to the user and give the

user the option to either Save the Stop or start navigating to the Stop. The packet sequence for the Legacy Stop

message is shown below:

N Direction Packet ID Data Type

0 Server to Client 135 – Legacy Stop Message Packet ID legacy_stop_msg_type

Need help? Email FleetSupport@garmin.com Page 130 001-00096-00 Rev. S

The type definition for the legacy_stop_msg_type is shown below.

typedef struct

 {

 sc_position_type stop_position;

 char name[]; /* variable length, null-terminated string, 51 characters max */

 } legacy_stop_msg_type;

The stop_position member is the location of the Stop. The name member will be used to identify the destination

through the Client’s user interface.

Need help? Email FleetSupport@garmin.com Page 131 001-00096-00 Rev. S

7 Frequently Asked Questions

7.1 Fleet Management Support on Garmin Devices

Q: How can a Partner observe the Garmin FMI protocols without first implementing solutions on a Server?

A: Use the Garmin “Fleet Management Controller” tool (also known as the “FMC” or “PC App”) for initial

development, which simulates Server connectivity, and can be connected to a Garmin FMI Client device to observe

format and sequence of protocol packets outlined in this document. This free tool can be found in the Fleet

Management Interface Developer Kit at: http://developer.garmin.com/fleet-management/

Q: What Garmin devices support the fleet management protocol described in this document?

A: Please visit http://www.garmin.com/solutions/ for the complete list of Garmin devices that support the fleet

management protocol described in this document.

Q: My Garmin device displays a message that says “Communication device is not responding. Please check

connections”.

A: This means that your Garmin device lost connection to the Server and is waiting for the Server to send an Enable

Feet Management protocol request. For more information on the Enable Fleet Management protocol request, see

Section 5.1.2 of this document.

http://developer.garmin.com/fleet-management/
http://developer.garmin.com/fleet-management/
http://www.garmin.com/solutions/
http://www.garmin.com/solutions/

